Sediment Characterization Report in Support of the Feasibility Study

Site 17 - Pettibone Creek

Naval Station Great Lakes Great Lakes, Illinois

Naval Facilities Engineering Command Midwest

Contract Number N62467-04-D-0055 Contract Task Order 474

July 2012

FINAL SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 – PETTIBONE CREEK

NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Naval Facilities Engineering Command Midwest
201 Decatur Avenue, Building 1A
Great Lakes, Illinois 60088

Submitted by: Tetra Tech 234 Mall Boulevard, Suite 260 King of Prussia, Pennsylvania 19406

CONTRACT NUMBER N62467-04-D-0055 CONTRACT TASK ORDER 474

JULY 2012

PREPARED UNDER THE SUPERVISION OF:

ROBERT DAVIS, PE PROJECT MANAGER

TETRA TECH

HICKEY.HOWARD Digitally signed by HICKEY.HOWARD.M.1287981070

.M.1287981070 DN: c=US.

HICKEY.HOWARD.M.1287981070
DN: c=US, c=US. Government, ou=DoD, ou=PKI, ou=USK, cn=HICKEY.HOWARD.M.1287981070
Date: 2012.07.23 14.07.27-05'90'

HOWARD HICKEY PLC M-LINE

NAVFAC MIDWEST

HICKEY.HOWARD.M.1

287981070

The trepring

APPROVED FOR SUBMITTAL BY:

JÖHN TREPANOWSKI, PE PROGRAM MANAGER

TETRA TECH

BRIAN A. CONRATH

REMEDIAL PROJECT MANAGER

ILLINOIS EPA

Digitally signed by HICKEY.HOWARD.M.1287981070
DN: c=US, o=U.S. Government, ou=DoD, ou=PKI,
ou=USN, cn=HICKEY.HOWARD.M.1287981070
T

ou=USN, cn=HICKEY.HOWARD.M.1287981070 HMH for Date: 2012.07.24 10:45:49 -05'00' HMH for

B. Simes

BENJAMIN SIMES

REMEDIAL PROJECT MANAGER

NAVFAC MIDWEST/NAVAL STATION GREAT LAKES

TABLE OF CONTENTS

SEC1	<u>ION</u>		PAGE NO.
ACR	ONYMS		v
EXEC	CUTIVE SI	UMMARY	ES-1
1.0	INTRO	DUCTION	1-1
	1.1	PURPOSE AND SCOPE	1-1
	1.2	REPORT ORGANIZATION	
	1.3	SITE BACKGROUND	1-2
	1.4	PREVIOUS INVESTIGATIONS	1-4
2.0	SAMPL	ING INVESTIGATION	2-1
	2.1	SAMPLING PROGRAM	2-1
	2.1.1	Benthic Invertebrate Sample Collection	2-2
	2.1.2	Surficial Sediment Sample Collection	2-3
	2.1.3	Suspended Sediment Sample Collection	2-3
	2.1.4	Field Quality Control Sample Collection	
	2.2	FIELD DOCUMENTATION	2-4
	2.3	ANALYTICAL PROGRAM	2-5
3.0	EVALU	IATION OF RESULTS	3-1
	3.1	RISKS TO BENTHIC INVERTEBRATES	3-1
	3.1.1	Benthic Community Survey	3-2
	3.1.2	Surficial Sediment	
	3.1.3	Sediment Toxicity Testing	
	3.1.4	Risk to Benthic Invertebrates Summary/Conclusions	
	3.2	UPSTREAM CONTINUING SEDIMENT CONTAMINATION SOURCE	
	3.2.1	Comparison of Upstream Samples to Site Samples	3-9
	3.2.2	Suspended Sediment Comparison to Sediment Criteria	
4.0	SUMM	ARY, CONCLUSIONS, AND RECOMMENDATIONS	4-1
	4.1	SUMMARY/CONCLUSIONS	4-1
	4.1.1	Benthic Community Evaluation	
	4.1.2	Upstream Continuing Sediment Contamination Source	
	4.2	RECOMMENDATIONS	
REFE	RENCES		R-1
KEFE	RENCES		K-
<u>APPE</u>	ENDICES		
Α	SUPPO	ORTING DOCUMENTS FOR FIELD ACTIVITIES AND SITE PHOTOGRAPH	·IS
В		IIC COMMUNITY SURVEY REPORT AND PLOTS OF BENTHIC COMMUN CS VERSUS SEDIMENT CONCENTRATIONS	NITY
С		VALIDATION REPORTS AND DATA USABILITY ASSESSMENT	
D E		LE SELECTION FOR TOXICITY TESTING ENT TOXICITY TESTS REPORT AND TOXICITY CONCENTRATION PLO	тѕ

TABLES

NUMBER

2-1	Analytical Summary
2-2	Water Quality Parameters for Sampling Reaches Analyzed for Benthic Invertebrates
2-3	Summary of Collected Quality Control Samples
2-4	Summary of Grain Size Analysis from 2001 Remedial Investigation
3-1	Summary of Benthic Community Results
3-2	Detected Chemical Concentrations in Sediment Compared to Screening Criteria
3-3	Detected Site and Upstream Concentrations Compared to Maximum Reference Concentration
3-4	Summary of Hyalella azteca Survival and Growth Results
3-5	Determination of Sediment NOECs
3-6	Comparison of Benthic Community Results, Sediment Chemistry, and Toxicity Testing
3-7	Detected Site Concentrations Compared to Maximum Upstream Concentration
3-8	Detected Chemical Concentrations in Suspended Sediment Compared To Screening Criteria
3-9	Detected Chemical Concentrations in Sediment Compared to Maximum Suspended Sediment
	Concentration

FIGURES

<u>NUMBER</u>

1-1	Flow Chart of DQO Decision Results
1-2	Site Vicinity Map
2-1	Sampling Locations
3-1	Macroinvertebrate Index of Biotic Integrity at Each Benthic Community Sample Location
3-2	Current and Historical Sampling Locations
3-3	Total PAHs Concentrations at 2001 and 2012 Sampling Locations
3-4	Copper and Lead Concentrations at 2001 and 2012 Sampling Locations
3-5	Zinc Concentrations at 2001 and 2012 Sampling Locations
3-6	Total PAHs Concentrations at Adjacent 2001 and 2012 Sampling Locations
3-7	Total PCBs Concentrations at Adjacent 2001 and 2012 Sampling Locations
3-8	Total DDT Concentrations at Adjacent 2001 and 2012 Sampling Locations
3-9	Copper Concentrations at Adjacent 2001 and 2012 Sampling Locations
3-10	Lead Concentrations at Adjacent 2001 and 2012 Sampling Locations
3-11	Zinc Concentrations at Adjacent 2001 and 2012 Sampling Locations

ACRONYMS AND ABBREVIATIONS

bss Below sediment surface

cm Centimeter

COC Chemical of Concern
CTO Contract Task Order

DUA Data usability assessment
Empirical Empirical Laboratories, LLC

EPA Environmental Protection Agency

EPT Ephemeroptera, Plecoptera, and Trichoptera

HHRA Human health risk assessment

IAW In accordance with

MBI Modified Biotic Index

mg/kg Milligram per kilogram

mIBI Macroinvertebrate Index of Biotic Integrity

msl Mean sea level

NA Not applicable/Not available

NAVFAC Naval Facilities Engineering Command

Navy U. S. Department of the Navy

NCRS North Chicago Refiners and Smelters

NFA No further action

NOECs No Observed Effects Concentrations

NSGL Naval Station Great Lakes

PAH Polynuclear aromatic hydrocarbon

PCB Polychlorinated biphenyl

PEC probable effects concentration

PSL Project screening level

QHEI Qualitative Habitat Evaluation Index

RA Risk Assessment

RI Remedial Investigation

SAP Sampling and Analysis Plan SOP Standard operating procedure

TOC Total organic carbon

U.S. United States

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

This Sediment Characterization Report in Support of the Feasibility Study for Site 17 – Pettibone Creek at the Naval Station Great Lakes (NSGL), Great Lakes, Illinois presents the results of the March 2012 sampling event.

Site 17 – Pettibone Creek, located at NSGL in Great Lakes, Illinois, comprises Pettibone Creek (North and South Branches) and the Boat Basin. For the investigation, "the Site" was defined as the portion of the North Branch of Pettibone Creek that lies within the NSGL property boundary, exclusive of the Boat Basin. The South Branch of Pettibone Creek is considered the "Reference" area. A variety of land uses currently surround NSGL, including urbanized and industrial areas to the north, industrial use areas to the west, and a mixture of public use land and residential neighborhoods to the south. Former industries located upstream of NSGL were turn-of-the-20th century manufacturing facilities that produced tantalum mill products, non-ferrous metals, and zinc oxide. Discharges from these industries, in combination with discharges from several storm sewers which collect water/runoff from a large section of the City of North Chicago, have contributed to elevated concentrations of contaminants in Pettibone Creek and Boat Basin sediments. Because of the industrial and urban nature of this watershed, Pettibone Creek is subject to flash flooding and associated erosive forces during storm events; therefore, the sediment present is mobile. The creek bottom sediment which erodes during storm events is believed to deposit in layers in the Boat Basin, based on layering observed during previous Boat Basin investigations.

Previous investigations detected elevated concentrations of several chemicals in the most upstream samples in Pettibone Creek, indicating that the predominant source of these chemicals appears to be off-site of NSGL; therefore, not all of the identified chemical contamination is site related. Human health and ecological risk assessments were performed as part of previous investigations to determine risk to representative receptors that have the potential to be exposed to site-related contamination. The human health risks were acceptable. The ecological risk assessment indicated potential risks to benthic invertebrates exposed to contaminated sediments.

Because of the potential ecological risks, the Navy conducted this investigation to determine: whether benthic invertebrates are adversely impacted from exposure to North Branch Pettibone Creek sediment; the current sediment quality in Pettibone Creek; and whether a continuing source of sediment contamination persists upstream of Navy property.

The sampling event consisted of collecting the following samples:

- Benthic invertebrates to assess benthic community health.
- Surficial sediment to determine sediment quality and toxicity, and to determine whether an upstream continuing source of contamination is present.
- Suspended sediment to determine whether an upstream continuing source of contamination is present. The samplers were deployed in March and were collected in June 2012.

When site and reference sample benthic invertebrate metrics are compared to chemical concentrations, there is no correlation between the sediment chemical concentrations and the benthic community health. Three lines of evidence were used to determine whether the benthic community was being impacted in Pettibone Creek, and if so, whether the impacts were related to the chemicals in the sediment. The first line of evidence, the benthic community survey, found that the benthic community in Pettibone Creek ranged from poor to fair; however, samples were collected outside of the index period specified by Illinois Environmental Protection Agency (EPA) for the use of these rankings. Although in general, the benthic communities in the reference reaches (South Branch) were better than those in the site reaches (North Branch). There was a strong correlation between the benthic community health and the habitat conditions. The next line of evidence was sediment chemistry. Several chemicals were detected at concentrations that exceeded their respective ecological screening levels. Among these chemicals, copper, lead, zinc, and total PAHs have the highest probability of impacting sediment invertebrates. Finally, the last line of evidence, toxicity testing, found that none of the site samples were considered impacted regarding the survival or growth of Hyalella azteca. Based on the results of these three lines of evidence, it does not appear that the chemicals in the sediment are impacting the benthic community in Pettibone Creek to a significant degree. The lack of toxicity observed in the toxicity test supports the likelihood that the poor to fair benthic community in the creek is related to the habitat. This is further supported by the plots that were prepared to evaluate the relationship between chemical concentrations and benthic community of the toxicity test results. No strong relationships were found on these plots.

Maximum concentrations of metals and PCBs were generally detected in the furthest upstream sampling location. Although the elevated metal concentrations are likely reflective of the manufacturing facilities that existed in this area, it is not known whether the concentrations in the sediment represent historical discharges, or whether there are current sources of metals that are still discharging to Pettibone Creek. A suspended sediment sample collected from culverts that receive stormwater drainage from the former manufacturing facilities area and northern part of NSGL had higher metals concentrations compared to all site and reference samples. The suspended sediment results suggest that upstream sources are

continuing to contribute to the chemical concentrations detected in Pettibone Creek downstream of where the creek enters the NSGL property. Maximum concentrations of PAHs were detected in an upstream sampling location which is immediately downstream of a storm sewer collecting water/runoff from a large section of the City of North Chicago. It is likely that upstream sources are continuing to contribute to the elevated PAHs concentrations detected in Pettibone Creek downstream of where the creek enters the NSGL property.

Based on the results of this investigation, no actions are recommended for Pettibone Creek because the poor benthic communities in some of the North Branch samples are likely related to the habitat, and not the sediment chemistry. Also, there appears to still be current sources of contamination to Pettibone Creek. However, one relatively simple step that could be taken to improve habitat conditions and channel morphology would be to refrain from removing woody debris that falls into the stream channel and along the banks. The woody debris also increases habitat complexity and provides stable, inhabitable substrate for specialized macroinvertebrates, including serving as a nutritional source for some. In any case, goals for restoration should be coordinated and measures to gage project success should be established as restoration activities are planned.

1.0 INTRODUCTION

This Sediment Characterization Report in Support of the Feasibility Study for Site 17 – Pettibone Creek at the Naval Station Great Lakes (NSGL), Great Lakes, Illinois was prepared for the United States (U.S.) Department of Navy (Navy), Naval Facilities Engineering Command (NAVFAC) Midwest by Tetra Tech under the Comprehensive Long-Term Environmental Action Navy, Contract Number N62467-04-D-0055, Contract Task Order (CTO) 474.

1.1 PURPOSE AND SCOPE

The purpose of this Sediment Characterization Report is to present the results of the most recent sampling conducted in accordance with the Sampling and Analysis Plan (SAP) (Tetra Tech, 2012), and to determine the following:

- Whether benthic invertebrates are adversely impacted from exposure to North Branch Pettibone Creek sediment.
- Current sediment quality in North Branch and South Branch of Pettibone Creek.
- Whether a continuing source of sediment contamination persists upstream of Navy property.

The most recent sampling event was conducted in March 2012 and consisted of collecting the following samples:

- Benthic invertebrates to assess benthic community health.
- Surficial sediment to determine sediment quality and toxicity, and to determine whether an upstream continuing source of contamination is present.
- Suspended sediment to determine whether an upstream continuing source of contamination is present. The samplers were deployed in March 2012 and were collected in June 2012.

The three lines of evidence collected as part of this investigation (sediment chemistry, sediment toxicity, and benthic community data) were used to determine whether the benthic community is being impacted and whether those impacts (if observed) are related to the chemicals in the sediment. The three lines of evidence were evaluated in accordance with the decision rules presented in the flow chart on Figure 5-1 of the SAP, which is included in this report as Figure 1-1.

1.2 REPORT ORGANIZATION

This Sediment Characterization Report is divided into the following sections:

- Section 1.0, Introduction, provides background information including the location and description of Site 17 – Pettibone Creek and a summary of previous investigations.
- Section 2.0, Sampling Investigation, describes the March 2012 sampling event and any deviations from the SAP.
- Section 3.0, Evaluation of Analytical Results, presents the results of March 2012 sampling event and evaluates data based on decision rules presented in the SAP.
- Section 4.0, Summary, Conclusions, and Recommendations.

1.3 SITE BACKGROUND

Site 17 – Pettibone Creek is located at NSGL in Great Lakes, Illinois. Site 17 comprises Pettibone Creek (North and South Branches) and the Boat Basin (see Figure 1-2). The North Branch of Pettibone Creek originates in North Chicago, enters the northwestern corner of NSGL, and flows south and east through the Mainside of the Naval Station until it enters the Boat Basin and discharges into Lake Michigan along the western shoreline. The North Branch of Pettibone Creek has a tributary which enters from the west about 900 to 1000 feet south from where the North Branch enters NSGL. The South Branch of Pettibone Creek originates in a residential area southwest of the Naval Station, flowing northward through a golf course and the Mainside of the Naval Station. The South Branch of Pettibone Creek is considered to represent a typical residential area unaffected by NSGL operational activities. The South Branch of Pettibone Creek has a tributary which enters from the west about 1000 feet south of the point where the North and South Branches of Pettibone Creek join. The North and South Branches of Pettibone Creek join approximately 1,500 feet west of Lake Michigan. For the investigation, "the Site" was defined as the portion of the North Branch of Pettibone Creek that lies within the NSGL property boundary, exclusive of the Boat Basin. The South Branch of Pettibone Creek is considered the "Reference" area.

Pettibone Creek is located in a stream valley with steeply eroded slopes. Pettibone Creek and its tributaries flow within a ravine that divides the plateau where the majority of NSGL activities occur, and then discharge to the Boat Basin. Elevations vary from approximately 650 feet above mean sea level (msl) at the top of the Pettibone Creek hillsides, to approximately 577 feet above msl at the Boat Basin, where the Pettibone Creek discharges to Lake Michigan (Tetra Tech NUS, Inc., 2003a). Pettibone Creek ranges between 15 and 30 feet in width, and several inches to 2 feet in depth.

A variety of land uses currently surround NSGL, including urbanized and industrial areas to the north, industrial use areas to the west, and a mixture of public use land and residential neighborhoods to the south. Former industries located upstream of NSGL include the North Chicago Refiners and Smelters (NCRS), the Vacant Lot, and Fansteel. These facilities were turn-of-the-20th century manufacturing facilities that produced tantalum mill products, non-ferrous metals, and zinc oxide. Discharges from these industries, in combination with discharges from several storm sewers which collect water/runoff from a large section of the City of North Chicago, have contributed to elevated concentrations of contaminants in Pettibone Creek and Boat Basin sediments. A Watershed Contaminated Source document (Tetra Tech NUS, Inc., 2003b) summarizes the activities that may have had an impact on sediments in Pettibone Creek and the Boat Basin.

Storm sewers that collect stormwater from a large section of the City of North Chicago drain to the creek upstream of Navy property [Illinois Environmental Protection Agency (EPA), 1995], and 30 NSGL stormwater sewer system outfalls from roadway drainage systems drain to the creek from the Navy property (Halliburton NUS, Inc., 1993). Because of the industrial and urban nature of this watershed, Pettibone Creek is subject to flash flooding and associated erosive forces during storm events; therefore, the sediment present is mobile. The creek bottom sediment which erodes during storm events is believed to deposit in layers in the Boat Basin, based on layering observed during previous Boat Basin investigations.

Fish are present in the creek and fish have been observed migrating upstream in the spring (Illinois EPA, 1995) and fall. No federally listed endangered or threatened species are known to exist in the area. The Mudpuppy salamander is listed as a threatened species that is protected by the State of Illinois. NSGL is conducting a study with the secondary objective to determine whether the Mudpuppy salamander is present in Pettibone Creek and the Harbor at NSGL, along with some additional locations. One sampling event was conducted in July 2011, but no Mudpuppy salamanders were observed or captured in the area during this event. Two additional sampling events occurred in 2012 but the results are not yet available. Habitat suitable to threatened or endangered species does not exist in Pettibone Creek, at least in part because of the highly developed nature of the surrounding land (U.S. Navy, 2010).

1.4 PREVIOUS INVESTIGATIONS

The following environmental investigations have been conducted at Site 17:

- Illinois EPA and USEPA investigations of sediment in the 1970s and 1980s.
- Initial Assessment Study at Naval Station Great Lakes (Rogers, Golden, & Halpern and BCM Eastern Inc., 1986).
- Site Inspection Report for Pettibone Creek, Boat Basin, and Harbor Area (Halliburton NUS, 1993).
- Comprehensive Environmental Response, Compensation, and Liability Act Expanded Site Inspection Report (Illinois EPA, 1995).
- Remedial Investigation and Risk Assessment Report Site 17 Pettibone Creek and Boat Basin (Tetra Tech NUS, Inc., 2003a).
- Feasibility Study for Site 17 Pettibone Creek and Boat Basin (Tetra Tech NUS, Inc., 2005).

In addition, abandoned industrial facilities in the City of North Chicago, located along the North Branch of Pettibone Creek upstream of NSGL, were included in investigations by the USEPA and Illinois EPA. Details of the previous investigations listed above are provided in the Remedial Investigation/Risk Assessment (RI/RA) Report (Tetra Tech NUS, Inc., 2003a), and Feasibility Study (Tetra Tech NUS, Inc., 2005). An additional field investigation conducted in December 2008 is documented in the draft Remedial Action Plan (Tetra Tech NUS, Inc., 2011).

Pettibone Creek is susceptible to flash floods characterized by high channel velocities with great erosive potential. Because of the transient nature of sediment and the amount of time that has passed since the last sediment data collection, the current extent of contamination, if any, is unknown. Over time, the sediment contaminant concentrations may have decreased and been redistributed along the North Branch of Pettibone Creek. Continued washout of sediments upstream of Navy property is considered to be a potential continuing source of sediment contamination on Navy property.

Based upon previous investigations, volatile organic compounds were not significant site-related contaminants at Site 17. Previous investigations identified an increase in polynuclear aromatic hydrocarbon (PAH) concentrations in sediment samples, which is believed to have been caused by the widespread use of petroleum products in modern industrialized society. Previous polychlorinated

biphenyl (PCB) concentration patterns that indicated greater PCB concentrations near the upstream edge of NSGL property suggest that upstream chemical sources may have contributed to the sediment contamination. In addition, PCB contamination of sediments may have occurred as a result of the storage of out-of-service transformers (some filled with PCB-containing oil) at various locations within the Naval Station. Predominant inorganic metals (such as copper, lead, and zinc) found in Site 17 sediments were identified as significant environmental contaminants in sediment samples collected upstream of Site 17. The RI/RA (Tetra Tech NUS, Inc., 2003a) indicated that concentrations of target analytes detected in offsite upstream samples were often two to three times greater than concentrations in Site 17 sediment samples. Elevated concentrations of several chemicals in the most upstream samples indicate that the predominant source of these chemicals appears to be offsite of NSGL; therefore, the chemicals may not be site related.

Previously collected data show that creek bottom sediments are stratified with respect to contaminant levels. A blue-gray clay layer located about 1 foot below the sediment surface (bss) is considered to represent native material that is not contaminated. Benthic organisms generally occupy the top 4 centimeters (cm) of sediment, and this is generally observed to be the most contaminated layer.

Human health and ecological risk assessments were conducted during the RI/RA using data from the 2001 field investigation (Tetra Tech NUS, Inc., 2003a) for representative receptors that have the potential to be exposed to site-related contamination.

The human health risk assessment (HHRA) focused on adolescent and adult recreational users exposed to surface water, sediment, and fish in Pettibone Creek and Boat Basin. The human health risks associated with exposure to chemicals of potential concern in sediment and surface water from Pettibone Creek for both the adult and adolescent recreational users were either less than or within USEPA target levels. Although some fish may be present in the North Branch of Pettibone Creek, it does not support a significant fish population; therefore, the HHRA assumed that recreational fishing does not occur within Pettibone Creek. However, the HHRA did consider human health risk from ingestion of fish caught in the Boat Basin. Fish tissue samples were not collected; instead, fish tissue concentrations were estimated from sediment concentrations and sediment bioaccumulation factors. Fish ingestion risks for recreational fishermen (based on the estimated fish tissue contaminant concentrations) exceeded USEPA target levels for PCBs and pesticides; the risks to recreational fishermen were consistent with the Illinois EPA fish advisories for Lake Michigan.

A screening-level ecological risk assessment was performed using surface water and sediment data. No chemicals detected in surface water were retained as chemicals of concern (COCs) for potential risks to aquatic organisms. PAHs, several pesticides, and several metals were retained as COCs for potential

JULY 2012 REVISION 0

risks to benthic invertebrates exposed to contaminated sediments. Two pesticides (4,4'-DDE and 4,4'-DDT) were retained as COCs for potential risks to piscivorous birds exposed to contaminated sediments via ingestion of fish and benthic invertebrates. However, wildlife is not expected to be impacted because the limited populations of fish in the creek will only account for a small portion of their diet from the site. Soil erosion in the creek may add physical stressors to the risks to benthic invertebrates.

DUA = Data usability assessment IAW = in accordance with NFA = No Further Action PSL = Project Screening Level

Figure 1-1 Flow Chart of DQO Decision Rules

2.0 SAMPLING INVESTIGATION

This section provides a summary of the sampling activities conducted at Site 17 – Pettibone Creek during the March 2012 Sediment Characterization. Samples were collected in accordance with the SAP. Supporting documents for the field activities are provided in Appendix A, including the chain of custody forms and the sediment sample log sheets. Appendix B contains the field data sheets for the benthic invertebrate community study.

2.1 SAMPLING PROGRAM

The following summarizes the samples collected during this investigation. More detailed descriptions of sample collection are provided in Sections 2.1.1 through 2.1.4. Table 2-1 presents the samples that were collected as part of the current investigation. Figure 2-1 shows the sampling locations.

Sediment samples for chemical analysis and toxicity testing, and benthic community health data were collected to determine whether benthic invertebrates are being adversely impacted from exposure to North Branch Pettibone Creek sediment. Benthic invertebrates were collected from North and South Branches of Pettibone Creek to assess benthic community health throughout the creek. Surficial sediment samples were collected from North and South Branches (including the North Branch upstream of the NSGL property) to determine sediment quality throughout the creek, and to determine whether chemical concentrations in the North Branch sediment were elevated compared to concentrations in upstream and reference samples. Surficial sediment samples were also collected in the North Branch of Pettibone upstream of the NSGL property. Suspended sediment samples were collected from sediment traps installed at the culvert pipes at the North Branch northern entry point onto NSGL property. The upstream surficial sediment samples and suspended sediment samples were collected to determine whether there is a continuing source of sediment contamination to Pettibone Creek. The surficial and suspended sediment samples were analyzed for PAHs, select pesticides, PCBs, and select metals based on the COCs identified for sediments in the RI. Toxicity testing was conducted on select sediment samples to determine whether the sediment was toxic to sediment invertebrates.

Composite samples were collected for the benthic invertebrate surveys and surficial sediment analysis. Each sample location where benthic invertebrate survey and surficial sediment samples were collected consisted of a 300-foot long creek reach. When only a surficial sediment sample was collected, sample reaches were approximately 100 feet long. Sample locations were determined in the field using the midpoint coordinate for each 300 foot reach (see Table 2-1) and then measuring upstream and downstream to obtain the linear length of each reach. The length of the 100 foot sample reaches were determined visually based on physical features identified on a site aerial photograph (Figure 2-1).

The South Branch of Pettibone Creek was used as the reference area and was assumed to represent site conditions in the absence of upstream or site-related contamination.

2.1.1 Benthic Invertebrate Sample Collection

Benthic invertebrates were collected from 14 reaches to adequately characterize the benthic community present within Pettibone Creek (see Figure 2-1). Nine of these reaches represent the site and were located along the North Branch of Pettibone Creek (including one in the tributary), and five are reference reaches (including one in the tributary), located in the South Branch of Pettibone Creek.

Each of the sample locations consisted of a 300-foot long creek reach. The reaches were selected through mapping exercises to be regularly distributed reaches throughout the North and South Branches of Pettibone Creek; in areas where there was sufficient width of the wetted stream or tributary; and in avoidance of bridges and other major habitat alterations (if possible), and uncommon habitat features.

Standard Operating Procedures (SOPs) used by the Illinois EPA were followed for the field benthic macroinvertebrate sampling as indicated in the SAP (Tetra Tech, 2012). Site location and benthic sampling field forms are provided in Appendix B.

Field sampling methods included using a long handled D-frame net to produce a multi-habitat composite sample (a 20-jab sampling technique), targeting habitat types in proportion to their occurrence in the reach as described in the Illinois EPA SOP (Illinois EPA, 2011), and Appendix A of the SAP (Tetra Tech, 2012). It was assumed that the habitat types at the site and reference areas are comparable and fairly homogenous. Habitats that did not appear comparable and fairly homogenous (i.e., habitat types that made up less than 5 percent of the stream reach or were present only in the reference area and not the impact area) were not sampled.

In addition to collecting the benthic samples, the field crew made field observations related to stream habitat conditions, and conducted a visual-based physical habitat assessment and a modified 100-particle Wolman pebble count at each sample location. The modified 100-particle Wolman pebble count was conducted by dividing the sampling location into 10 transects based upon the percentage of features present within the stream reach (e.g., pools, riffles). Ten particles were randomly picked from the substrate at even intervals across each transect and measured with a sand gauge. Particles were determined to be either silt, very fine sand, fine sand, medium sand, coarse sand or very coarse sand. Particles larger than coarse sand were measured on a millimeter scale. The field forms for the habitat assessment and the pebble count completed in the field are presented in Appendix B. The habitat assessment includes measures of the Qualitative Habitat Evaluation Index (QHEI) as recommended by

Illinois EPA, and the Wolman pebble count for quantitative measurement of substrate particle size. Select field water quality parameters such as conductivity, dissolved oxygen, pH, and water temperature were measured in the field with a water quality meter and the results are presented in Table 2-2.

After the benthic samples were collected, they were processed in the field, which included sieving the sediment through a 500 micron sieve, preserving the retained material in 95 percent ethanol, and placing it in sample jars. The benthic samples remained in 95 percent ethanol for at least 14 hours. Prior to packaging and shipping the samples to the taxonomic laboratory, alcohol preservative was decanted from the sample jars to comply with Department of Transportation shipping requirements. The sample jars were placed into appropriate shipping containers and shipped to the taxonomic laboratory (Aquatic Resources Center, Inc., Nashville, Tennessee).

2.1.2 <u>Surficial Sediment Sample Collection</u>

Surficial sediment samples were collected from 20 reaches in Pettibone Creek to adequately characterize the sediment quality within the creek (see Figure 2-1). Twelve of these reaches represent the site and were located along the North Branch of Pettibone Creek (including two in the tributary) within the NSGL boundary; five are reference reaches (including one in the tributary), located in the South Branch of Pettibone Creek; and three are upstream reaches in the North Branch of Pettibone Creek, located prior to where the creek enters the NSGL property.

The sediment samples were collected from 0 to 4 cm bss using disposable plastic trowels in accordance with Tetra Tech SOP SA-1.2. At all 20 reaches, sediment samples were collected for chemical analysis. In addition, approximately 1 gallon of sediment was collected for toxicity testing from the 14 sample reaches where the benthic macroinvertebrate survey was performed; however, toxicity testing was actually only conducted on sediment from eight of these reaches (see Section 2.3). Sediment was collected from between ten to twelve locations within each reach (approximately half the number of benthic sampling locations using the jab technique), and placed into a 5-gallon plastic bucket lined with a plastic bag to obtain one composite sample for each reach. After the needed volume of sediment was obtained for a reach, the sample material was homogenized by manual mixing, and then placed into the appropriate sample bottles using a disposable trowel. The sample jars were placed into appropriate shipping containers and shipped to Empirical Laboratories, LLC (Empirical), Nashville, Tennessee for chemical analysis.

2.1.3 Suspended Sediment Sample Collection

Sediment traps were installed on March 27, 2012 in the culverts that discharge the North Branch of Pettibone Creek onto NSGL, and were deployed for 79 days to obtain a representative sample of

upstream suspended sediment in the creek as it enters the NSGL property. Each trap is constructed from a 4-inch polyvinyl chloride pipe and a 7-inch by 32-inch filter bag, and is designed/installed in such a way as to collect and direct a portion of the stormwater discharge into the filter bag. The filter bag has a pore size of 1 micron to trap fine silt/clay (size less than 0.003 inches) suspended solids from the stormwater discharge. A screen/diverter on the inlet end of the trap minimizes trash, leaves, etc. from entering the trap. Photos of the sediment traps are included in Appendix A.

Sediment from the filter bags within the traps were collected on June 14, 2012 after being deployed 79 days and out of position approximately 3 days. The filter bags were removed from the sediment traps and placed in labeled plastic resealable bags. Suspended sediment from NTC17PCSD50 and NTC17PCSD51 were combined and placed in one resealable bag into order to provide sufficient sediment for analysis. The resealable bags were placed into appropriate shipping containers and shipped to Empirical, Nashville, Tennessee for chemical analysis. The sediment traps were removed and disposed of following sample collection.

After the samplers were first deployed, a storm event caused debris to gather on the upstream side of the traps and the water pressure turned the traps vertically so they were no longer collecting sediment. The traps were found out of position on April 30th. The debris was removed and the traps were repositioned three days later on May 3rd.

2.1.4 Field Quality Control Sample Collection

A summary of the quality control samples collected (i.e., equipment rinsate blanks and field duplicates) is presented in Table 2-3.

Disposable equipment was used; therefore, only one sample per batch of disposable equipment was collected. An equipment rinsate blank was collected from the plastic trowel and was analyzed for PAHs, select pesticides, PCBs, and select metals. Two field duplicates were collected for surficial sediment.

2.2 FIELD DOCUMENTATION

Documentation of field observations was recorded on sample log sheets. Field sample log sheets were used to document sample collection details, and other observations. Copies of the sample log sheets are provided in Appendix A.

2.3 ANALYTICAL PROGRAM

The taxonomic laboratory (Aquatic Resources Center, Inc. in Nashville, Tennessee) identified the benthic macroinvertebrates collected in accordance with the methods identified in the SAP (Tetra Tech, 2012). Two quality control steps were used to calculate quality control performance measures, such as taxonomic precision and percent sorting efficiency. These quality control steps included re-identification of select samples by Freshwater Benthic Services, Inc. in Petoskey, Michigan and re-sort to check for missed organisms by Tetra Tech's Center for Ecological Sciences in Owings Mills, Maryland. The results of the benthic invertebrate survey are presented in Section 3.0.

The analytical laboratory (Empirical) analyzed the surficial sediment samples in accordance with the analytical methods identified in the SAP (Tetra Tech, 2012). Empirical met the Project Action Limits identified in the SAP (Tetra Tech, 2012). Sediment sample results reported by the laboratory are presented in Section 3.0. Data validation reports are presented in Appendix C.

A data usability assessment (DUA) was completed in accordance with the SAP to make sure that the amount, type, and quality of data are sufficient to achieve project objectives. The DUA report is presented in Appendix C. In summary, the DUA found that the data adequately represent site conditions and the amount, type, and quality of data collected are sufficient to achieve the objectives of this sediment characterization report.

Physical sediment data, such as total organic carbon (TOC), and pH, were collected to help describe habitat conditions and assist in understanding the spatial distribution and magnitude of contamination. Although it was specified in the SAP, the sediment samples were inadvertently not analyzed for grain size due to an oversight during the sampling event. However, the absence of the data did not impact the results of the investigation because the pebble count conducted as part of the benthic invertebrate study was adequate to characterize the sediment substrate. The grain size data collected in 2001 during the RI are presented in Table 2-4. The sediment samples from 0 to 4 cm and from 1 foot below the sediment surface (bss) were classified as sand or silty sand. One sample was collected from 4 cm to 3 feet bss and was classified as clayey sand, which is consistent with the observation of a blue-gray clay layer located about 1 foot bss and is considered to represent native material.

As presented in Section 2.1.2, sediment was collected for toxicity testing from the 14 sample reaches where the benthic macroinvertebrate survey was conducted to determine whether the sediment was toxic to benthic invertebrates. Of the 14 sample reaches, samples from 6 of the site reaches (NTC17PCSD53, NTC17PCSD54, NTC17PCSD60, NTC17PCSD61, NTC17PCSD63, and NTC17PCSD64) and 2 reference reaches (NTC17PCSD66 and NTC17PCSD68) were selected for toxicity testing. These reaches were selected for toxicity testing based primarily on the results of the PAH and metals

(specifically copper, lead, and zinc) analysis conducted on the surficial sediment samples from these reaches. The samples selected for toxicity testing represent a concentration gradient from low to high from the analysis results. Appendix D presents a memorandum describing sample selection with supporting tables and figures. 10-Day sediment toxicity tests were performed in accordance with the methods identified in the SAP (Tetra Tech, 2012), and the endpoints of the test were survival and growth. Toxicity testing was conducted because preliminary analysis of the benthic invertebrate survey indicated unacceptable benthic community health at some sampling locations, and chemical concentrations in several site sediment samples were greater than ecological sediment screening levels and the maximum concentration from reference locations. Toxicity testing was conducted by Tetra Tech's Center for Ecological Sciences in Owings Mills, Maryland.

TABLE 2-1

ANALYTICAL SUMMARY SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

				Samples Collected/Analyzed				
	Coordinates ⁽¹⁾		Benthic	Surficial	Suspended	Toxicity		
Sample Location	Easting	Northing	Invertebrates	Sediment	Sediment	Testing		
Suspended Sediment		_						
NTC17PCSD50	1116804.64	2057272.74			X*			
NTC17PCSD51	1116804.64	2057272.74						
NTC17PCSD52	1116804.64	2057272.74			Χ			
Site Locations								
NTC17PCSD53	1116928.8243	2057183.8898	X	X ⁽²⁾		X		
NTC17PCSD53 (Duplicate)	1116928.8243	2057183.8898		X ⁽²⁾				
NTC17PCSD54	1116993.1179	2056881.3082	Х	X		Х		
NTC17PCSD55	1117017.2582	2056515.8307		Х				
NTC17PCSD56	1117034.8173	2056628.7196		X				
NTC17PCSD57	1116645.0522	2056521.4880		Х				
NTC17PCSD58	1116857.5481	2056552.5316	Χ	X ⁽²⁾				
NTC17PCSD59	1117056.3886	2056309.2813	X	X ⁽²⁾				
NTC17PCSD60	1117326.9744	2056111.2843	Χ	X		Х		
NTC17PCSD61	1117535.0762	2055861.8317	Х	X ⁽²⁾		Х		
NTC17PCSD61 (Duplicate)	1117535.0762	2055861.8317		Х				
NTC17PCSD62	1117851.8329	2055689.9138	Х	Х				
NTC17PCSD63	1118213.9299	2055593.5558	Х	X ⁽²⁾		Х		
NTC17PCSD64	1118494.7500	2055807.2319	Χ	X		Х		
Reference Locations								
NTC17PCSD65	1117454.2820	2055554.6955	Х	X ⁽²⁾				
NTC17PCSD66	1117300.6111	2055280.3905	Χ	X		Х		
NTC17PCSD67	1117356.6995	2054864.0253	Х	X ⁽²⁾				
NTC17PCSD68	1117291.0944	2054466.6536	X	X		Х		
NTC17PCSD69	1116914.1408	2054909.5684	Х	X				
Upstream Locations								
NTC17PCSD70	1116033.7562	2059460.3328		Х				
NTC17PCSD71	1116194.3430	2058967.3369		Х				
NTC17PCSD72	1116331.5627	2058600.7029		X	<u> </u>			

Notes:

Surficial sediment and suspended sediment samples were analyzed for PAHs, select pesticides, PCBs, select metals, and total organic carbon.

- X* Sample combined to provide enough sediment for metal analysis only.
- X Sample collected/analyzed.

NA - Not applicable.

Footnotes:

- 1 Midpoint of sampling reach. Coordinates reported as NAD 83 IL East Feet.
- 2 Also analyzed for pH.

TABLE 2-2
WATER QUALITY PARAMETERS FOR CREEK REACHES WHERE BENTHIC INVERTEBRATES WERE COLLECTED

SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

	Temperature	Conductivity	Dissolved					
Station ID	(°C)	(ms/cm)	Oxygen (mg/L)	рН	Turbidity (NTU)	Odor	Surface Oil	Turbidity Description
NTC17PCSD53	11.4	1.29	11.61	7.98	13	None	Sheen	Slightly turbid
NTC17PCSD54	12.33	1.47	12.68	7.99	14.2	None	Sheen, Flecks	Slightly turbid
NTC17PCSD58	10.04	2.21	11.36	7.78	7.5	None	Sheen	Clear
NTC17PCSD59	14.23	1.65	14.9	8	7.1	None	None	Slightly turbid
NTC17PCSD60	10.59	1.73	13.06	7.85	8.2	None	None	Slightly turbid
NTC17PCSD61	11.02	1.72	9.16	6.91	11.8	None	None	Slightly turbid
NTC17PCSD62	12.34	1.64	10.78	8.33	13.2	None	Sheen	Slightly turbid
NTC17PCSD63	10	1.69	11.44	8.09	7.2	None	Sheen, Flecks	Slightly turbid
NTC17PCSD64	11.86	1.66	12.04	8.35	8.3	None	Sheen	Slightly turbid
NTC17PCSD65	8.77	1.73	14.28	8.05	17.1	None	Sheen	Clear (high turbidity reading from walking in channel)
NTC17PCSD66	10.23	1.65	14.99	8.15	8.5	None	Sheen, Flecks	Clear (elevated turbidity reading from walking in channel)
NTC17PCSD67	12.95	1.42	15.15	8.39	9.1	None	Sheen, Flecks	Clear
NTC17PCSD68	13	1.4	15.52	8.4	4.1	None	Sheen	Slightly turbid
NTC17PCSD69	11.61	2.99	12.88	8.02	1.1	None	Sheen	Clear

NTU - Nephelometric turbidity units

TABLE 2-3

SUMMARY OF COLLECTED QUALITY CONTROL SAMPLES SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

Sanple ID	Media	Chemistry ⁽¹⁾	TOC	pН	Comments		
Field Duplicates							
FD032812-02	Sediment	Х	Χ	Х	Duplicate of NTC17PCSD53		
FD032812-01	Sediment	X X Duplicate of NTC17PCSD61		Duplicate of NTC17PCSD61			
Equipment Rinsate Blanks							
RB033012-01	Water	Х	Rinsate of plastic trowel				

Notes:

Blank cell indicates that the sample was not analyzed for that parameter.

X - Analysis performed.

Footnotes:

1 - Analyzed for PAHs, select pesticides, PCBs, and select metals.

Acronyms:

TOC - Total Organic Carbon

TABLE 2-4

SUMMARY OF GRAIN SIZE ANALYSIS FROM 2001 REMEDIAL INVESTIGATION SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

SITE	SITE 17					
LOCATION	NTC17PCSD01	NTC17PCSD03	NTC17PCSD15	NTC17PCSD19	NTC17PCSD38	NTC17BBSD53
DEPTH RANGE ⁽¹⁾	At 1 foot	0 - 4 cm	4 cm - 3 feet			
SAMPLE ID	NTC17PCSD0102	NTC17PCSD0301	NTC17PCSD1501	NTC17PCSD1901	NTC17PCSD3801	NTC17BBSD5303
SAMPLE DATE	9/24/2001	9/24/2001	9/23/2001	9/22/2001	9/24/2001	9/6/2001
MATRIX	SD	SD	SD	SD	SD	SD
Miscellaneous Parameters (%	<u>6)</u>					
SIEVE 1"	100	100	100	100	100	100
SIEVE 3/4"	98.42	100	100	100	100	100
SIEVE 1/2"	97.88	100	100	100	100	98.07
SIEVE 3/8"	94.71	100	100	99.56	100	97.88
NO. 4 SIEVE	86.51	99.73	97.8	98.9	99.7	96.55
NO. 10 SIEVE	56.58	99.58	90.6	95.82	98.88	93.89
NO. 20 SIEVE	22.82	98.61	71.22	86.93	97.16	90.53
NO. 40 SIEVE	10.65	86.64	34.5	69.83	91.79	84.63
NO. 60 SIEVE	4.42	47.6	5.31	40.84	49.74	71.56
NO. 140 SIEVE	0.79	14.37	0.76	16.53	14.85	54.32
NO. 200 SIEVE	0.65	11.4	0.69	13.66	12	49.45
USCS SYMBOL	SP	SM	SP	SM	SM	SC
USCS CLASSIFICATION	SAND	SILTY SAND	SAND	SILTY SAND	SILTY SAND	CLAYEY SAND

NTC - Naval Training Center

PC - Pettibone Creek

BB - Boat Basin

SD - Sediment

USCS - Unified Soil Classification System

1 Depth measured below ground surface

3.0 EVALUATION OF RESULTS

For this investigation, sediment samples were collected for chemical analysis and toxicity testing, and a benthic invertebrate community survey was performed to determine the health of the benthic community. This is sometimes referred to as the sediment triad approach because three lines of evidence are used to determine whether the benthic community is being impacted. In addition, sediment samples were collected to determine whether there is a continuing upstream source of contamination in Pettibone Creek and to characterize a few reaches in Pettibone Creek where the benthic community survey and toxicity testing was not conducted.

This section presents the results of the sampling, and an evaluation of the data in accordance with the decision rules presented in the SAP (Tetra Tech, 2012). The SAP identified two problems (designated A and B) that needed to be resolved. Both problems are summarized below.

Problem A:

Data on which risks to benthic invertebrates in the North Branch of Pettibone Creek were estimated in the RI/RA are a decade old, and are potentially no longer representative of current risks. The Navy must characterize current risks to benthic invertebrates from exposure to North Branch Pettibone Creek sediment to determine whether remedial action is necessary to reduce risks to acceptable levels.

Problem B:

A continuing source of sediment contamination may persist upstream of Navy property. The Navy needs to determine whether there is a continuing source of contamination to North Branch Pettibone Creek sediments on Navy property, and whether a remedial action is appropriate, in accordance with Navy policy. The policy states that contaminated sediments will not be remediated unless continuing sources of sediment contamination are eliminated.

The remainder of this section is divided into two primary sections to address these problems.

3.1 RISKS TO BENTHIC INVERTEBRATES

The first problem listed above is that the current health of the benthic community in Pettibone Creek is not known. The previous risk assessment conducted in the RI only compared chemical concentrations in sediment to various ecological sediment benchmarks to determine whether potential risks to benthic invertebrates were possible. No site-specific sediment toxicity testing or benthic community studies were conducted as part of the RI.

The three lines of evidence collected as part of this investigation (sediment chemistry, sediment toxicity, and benthic community data) were used to determine whether the benthic community is being impacted. The three lines of evidence were evaluated in accordance with the decision rules presented on Figure 1-1.

The first decision point in the flow chart (Figure 1-1) is to determine whether the collected samples and data are of sufficient type, quantity, and quality, as determined during the DUA, to complete this study. As presented in Section 2.3, the results of the DUA were that the data are adequate to complete the study. Therefore, no additional data need to be collected at this time and the rest of the evaluations presented on Figure 1-1 were conducted and are presented in the following sections.

3.1.1 Benthic Community Survey

The next decision point is to conduct a benthic community survey to determine whether the health of the benthic community in any site creek reach is worse than the health of the benthic community in the reference creek reaches. The details of the survey, including sampling methodology and the data evaluation are presented in Appendix B, which contains the Benthic Macroinvertebrate Conditions and Aquatic Life Habitat Characterization Report. The following paragraphs present a brief summary of the results and conclusions from that report.

The primary metric that was used to evaluate the health of the benthic invertebrate community in Pettibone Creek was the Macroinvertebrate Index of Biotic Integrity (mIBI) (Tetra Tech, 2007). Illinois EPA uses the mIBI as an indicator of biological conditions for assessment of aquatic life uses in their Clean Water Act programs. This index is responsive to a broad range of stressors, and is appropriate for use in assessing conditions in the study area. Measures of the biological sample (metrics) that comprise the index or are otherwise responsive were also valuable for interpreting macroinvertebrate conditions. Some of these metrics, including the mIBI scores, are presented in Table 3-1.

The samples had mIBI scores indicating biologically degraded conditions, with assessment ratings of "Fair" and "Poor." The threshold between "Fair" and "Poor" is 20.9 index points. Although the benthic community survey was conducted during the week of March 26-30, 2012, which is outside of the June to October index period specified by Illinois EPA, the index is still useful for comparing scores between the reference samples and the site samples. In general, the Pettibone Creek reference mIBI scores were in the "Fair" assessment category, and site index values were rated as "Poor"; however, there was some crossover. The small tributaries of both the reference and site samples had the lowest mIBI values in their respective categories. These small tributaries may have intermittent flow, which would be a stressful condition that compounds any stresses caused by water quality conditions; this could lead to the "Poor"

mIBI rating assessments. The site samples with scores in the "Fair" range were in the downstream portions of the channel (Figure 3-1).

The scores of each of the metrics were consistently low, with the exceptions of Total Taxa and the Modified Biotic Index (MBI), a composite score of pollution tolerances for individuals), which have moderate scores (Table 3-1). Average metric scores from reference sample were consistently higher than the average of site sample scores.

Taxa with high tolerance values ($TV \ge 7$) are considered tolerant of pollution. Seven midge taxa occurred only in reference sites, including Ablabesmyia (TV=6), Dicrotendipes (TV=8), Micropsectra (TV=4), Nanocladius (TV=3), Parachironomus (TV=8), Paraphaenocladius (TV=6), and Rheocricotopus (TV=6). Two tolerant midge taxa were only found in test sites, including Chironomus (TV=11) and Zavrelimyia (TV=8).

Test site NTC17PCSD63 had a high number of taxa (30) and higher than average concentrations of copper, lead, and zinc (see Table 3-2). Five of the 30 taxa (17%) were considered tolerant (tolerance values ≥ 7). In comparison, eight of 31 taxa (26%) were tolerant in reference site NTC17PCSD67, with the highest number of taxa and low concentrations of metals. High diversity does not appear to be due to tolerant taxa in this case. The tolerant taxa that were common to both samples included Oligochaeta, Tanytarsus, Cryptochironomus, and Stenelmis. Unique to the test site was Chironomus, which has the highest possible tolerance value (11).

It appears that taxa diversity was not driven by pollution tolerant taxa. Taxa richness is typically driven by sensitive taxa that tend to occur in lower numbers and to disappear when stresses cause unsuitable conditions. Tolerant taxa are sometimes present in low numbers even when environmental conditions are relatively good and they increase in numbers as conditions worsen. Changes in abundance may have no effect on richness. Using the same samples discussed above, two taxa in the test sample were intolerant of pollution (tolerance values ≤3) as were three taxa in the reference sample.

Taxa in the sensitive insect orders [Ephemeroptera, Plecoptera, and Trichoptera (EPT), mayflies, stoneflies, and caddisflies] are commonly used to indicate biological conditions in streams. Only Trichoptera were found in the samples. Several mayflies are sensitive to metals and stoneflies usually require cold, well-oxygenated waters. The study site has low level metal contamination and may be warm during summer low flows; these are conditions that are not generally suitable for mayflies and stoneflies. The Trichoptera taxa present were the moderately tolerant *Hydropsyche* and *Cheumatopsyche* (Trichoptera: Hydropsychidae). These are net-spinning filter feeders that were equally common in reference and site samples.

The percentage of organisms that scrape substrate surfaces for food resources (% scrapers) (Merritt et al., 2008) were notably higher in reference samples as compared to site samples. If scouring is frequent in the channel, then substrate, food resources, or the scrapers themselves may be carried away during spates.

Densities were calculated from the laboratory subsampling data, and were higher in reference samples than in site samples in most cases (Table 3-1). However, the highest density was found in one of the downstream site samples. Low densities have been linked to stressful habitat and water quality conditions (Gray, 2004).

Stream habitat conditions were characterized using the QHEI (Tetra Tech, 2012), which is calculated by summing scores for six individual measurements of instream and riparian conditions. In addition, the substrate particle size at each sampling location was characterized using systematic random pebble counts. Habitat quality was relatively consistent among locations, with QHEI scores ranging from 52 to 66 at reference locations, and 49.5 to 61 at site locations (Table 3-1). Most of the reference samples had QHEI scores in the "Good" range, as did many of the site samples; most of the site samples which were classified in the "Good" range were located in the downstream portions of the North Branch.

Appendix B presents the habitat evaluation index and use assessment field sheets. Six variables are considered in the overall QHEI score. The habitat variables that were most strongly related to the QHEI score [Pearson correlation coefficient (p) greater than 0.55] were instream cover, channel morphology, pool/glide, and riffle/run quality. Bank erosion and riparian zone, gradient, and substrate were not significantly related to the QHEI score (p greater than 0.05). This may be because of the low variability among samples for these variables. For example, the rating for the gradient variable was 10 at all sites. As can be seen in site photos (Appendix B), the locations have similar characteristics in terms of substrates, channel conditions, and riparian stability and vegetation.

In summary, the biological conditions of the samples were ranked from best to worst based on the mIBI. Within this list, the significance of the different mIBI scores was compared using the 90% confidence interval of ±2.3 index units. The best two reference samples, furthest upstream on the South Branch, have similar mIBI scores that are significantly higher than any others. The locations with mIBI scores significantly worse than the lowest reference score (not including the reference tributary) include site samples NTC17PCSD60, NTC17PCSD53, and NTC17PCSD59, and the two tributary samples. The mIBI scores are included on the site map in Figure 3-1 to help spatially conceptualize the gradient of biological integrity.

3.1.2 Surficial Sediment

Surficial (0 to 4 inches) sediment samples were collected from several locations along Pettibone Creek in 2001 and 2012 to determine whether the chemical concentrations exceed sediment criteria. The 2001 samples were grab samples, while the 2012 samples were composite samples that were collected along 100-foot or 300-foot reaches of the creek.

Table 3-2 presents the detected chemical concentrations in each 2012 sediment sample. Figures 3-3 through 3-5 present the concentrations for select parameters (copper, lead, zinc, and total PAHs) at each sampling location from 2001 and 2012. Figures 3-6 through 3-11 present the chemical concentrations in the 2001 and 2012 samples side by side. However, these figures only show the 2001 results for samples that were collected within the same reaches as the 2012 samples, and only show the 2012 results if there was a 2001 sample collected from within the reach. In some cases, more than one 2001 sample was located within a 2012 reach. In those cases, the reach is listed multiple times on the x-axis, and the result for the associated 2001 sample is next to the 2012 result.

3.1.2.1 Comparison to Sediment Criteria

The concentrations of the detected chemicals in each 2012 sediment sample were compared to the following sediment criteria. Exceedances of the criteria are shown in Table 3-2.

- Baseline Sediment Cleanup Objectives from the Draft Illinois EPA Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments (Illinois EPA, 2009) were used to evaluate most PAHs.
- USEPA Region 5 Ecological Screening Levels for Sediment (USEPA, 2003) were used to evaluate PCBs, pesticides, metals and benzo(g,h,i)perylene. The Region 5 ecological screening levels for sediment for metals, PCBs, and several of the pesticides are based on the threshold effects concentrations (TECs) from MacDonald et al. (2000).

The sediment criteria for select chemicals are also shown on Figures 3-3 through 3-11. These figures along with the discussion below provide comparisons of the data to the criteria, and the reference reaches to the upstream concentrations.

Individual PAHs exceeded screening levels in several samples and concentrations of total PAHs exceeded the screening level in every sample (see Table 3-2). Two upstream samples from NTC17PCSD71 (33.7mg/kg) and NTC17PCSD72 (116 mg/kg) and three site samples from NTC17PCSD53 (90 mg/kg), NTC17PCSD54 (34.7 mg/kg), and NTC17PCSD60 (25 mg/kg) had total PAH

concentrations exceeding the alternative sediment cleanup objective of 23 milligrams per kilogram (mg/kg) (Illinois EPA, 2009). Sample location NTC17PCSD72 with the highest total PAH concentration is upstream of NSGL property, and just downstream of a large stormwater outfall that discharges runoff from North Chicago. Because a large portion of the area is paved and there is a lot of vehicular traffic, the runoff is likely a large source of the PAHs to the sediment in Pettibone Creek. The next greatest concentration of total PAHs was at NTC17PCSD53, which was located near the point where the North Branch of Pettibone Creek enters NSGL property.

One PCB, Aroclor-1260, was detected in 5 of 20 samples. One upstream sample location (NTC17PCSD70) had a PCB concentration slightly exceeding the calculated baseline sediment cleanup objective for total PCBs (0.0598 mg/kg). The samples had PCB concentrations well below the probable effects concentration (PEC) of 0.676 mg/kg based on toxicity to sediment-dwelling organisms (MacDonald, et al., 2000).

Concentrations of pesticides in several samples exceeded screening levels. Total DDT exceeded its calculated baseline sediment cleanup objective based on 4,4'-DDT (0.0042 mg/kg) in the samples, except one upstream sample; however, the total DDT concentrations were below the PEC of 0.572 mg/kg (MacDonald, et al., 2000). One other pesticide, endosulfan II exceeded screening levels in several samples. Maximum detected concentrations of total DDT (0.31 mg/kg) and endosulfan II (0.0033 mg/kg) are relatively low, and are indicative of typical spraying activities and not an intentional or accidental release of pesticides to the creek.

Only one sample (at upstream location NTC17PCSD70) had an arsenic concentration (13.5 mg/kg) exceeding the screening level (9.79 mg/kg); however, this concentration was well below the PEC of 33 mg/kg (MacDonald, et al., 2000). Two upstream sample locations had cadmium concentrations (1.32 J and 2.4 J mg/kg) exceeding the screening level (0.99 mg/kg); however, these concentrations also were well below the PEC of 4.98 mg/kg (MacDonald, et al., 2000). All chromium concentrations were less than the screening level (43.4 mg/kg). Concentrations of copper, lead, mercury, and zinc exceeded their respective screening levels in several samples. Sediment from two upstream sample locations (NTC17PCSD70 and NTC17PCSD71) and one site sample location (NTC17PCSD55) exceeded the copper PEC of 149 mg/kg, and the zinc PEC of 459 mg/kg (MacDonald, et al., 2000). Lead concentrations in two upstream samples exceeded the PEC of 128 mg/kg (MacDonald, et al., 2000). No mercury concentrations exceeded the PEC of 1.06 mg/kg; and most samples had mercury concentrations well below this value, except one upstream location (NTC17PCSD71) which had a mercury concentration of 0.96 mg/kg.

In summary, based on this comparison, it appears that the chemicals that have the greatest potential for impacting benthic invertebrates at the site are copper, lead, zinc, and total PAHs.

3.1.2.2 Comparison of Site Samples to Reference Samples

Table 3-3 presents the detected site sediment concentrations compared to the maximum reference sample concentration. Chemical concentrations in the site samples were generally greater than the concentrations in the reference samples with a few exceptions. However, chemical concentrations from the North Branch tributary and a few other sample locations in the North Branch were similar to the concentrations in the reference samples (see Figures 3-3 through 3-5).

3.1.2.3 Comparison of Current Concentrations to Historical Data

The analytical data from the current sampling investigation was compared to data from the 2001 sampling investigation to determine whether concentrations have decreased over time (Figures 3-3 through 3-11). The 2001 samples were collected from the same depth interval (0 to 4 cm) as the current samples; however, the 2001 samples were grab samples while the current samples were composite samples.

Figures 3-3 through 3-5 present the chemical concentrations for select parameters (copper, lead, zinc, and total PAHs) at each sampling location from 2001 and 2012. Figures 3-6 through 3-11 were prepared for the same parameters, but also include plots for total PCBs and total DDT. The chemical concentrations are also compared to screening criteria and higher effects level benchmarks for informational purposes.

The plots indicate a general decrease in chemical concentrations between 2001 and 2012 for the metals, PCBs, and pesticides. In fact, PCBs were not even detected in most of the 2012 samples. Exceptions were in the site samples collected downstream of the confluence of the North and South Branches, and in the reference samples where concentrations of metals were slightly greater in the 2012 samples. For PAHs, however, the opposite was observed because several of the concentrations in the 2012 samples were similar to or greater than the concentrations in the 2001 samples.

3.1.3 <u>Sediment Toxicity Testing</u>

Sediment toxicity testing was performed to help assess risks to sediment invertebrates, and to develop cleanup goals, if necessary. Whole sediment toxicity tests conducted for this investigation were 10-day tests using *Hyalella azteca* as the test species and were initiated on May 15, 2012. The endpoints of the tests were mortality as measured by survival, and growth as measured by dry weight. The sediment samples used for the test were collected along with the samples for chemical analysis. The tests were

conducted on one laboratory control sample, two reference samples, and six site samples. The two reference samples were collected from the South Branch of Pettibone Creek which is known to have not been impacted by site activities. Details of the toxicity test are presented in Appendix E. The results of the sediment toxicity testing are presented in Table 3-4. Mean survival of H. azteca in the site samples ranged from 82.5 to 93.8 percent, and ranged from 87.5 to 95 percent in the reference samples. Survival was acceptable in all samples (because it was greater than 80%) and mean survival in site samples was not significantly different than survival in the reference samples (see Appendix E). Mean growth of H. azteca in site samples ranged from 0.083 to 0.12 mg dry weight, and ranged from 0.11 to 0.15 mg, dry weight in the reference samples. Mean growth results in some of the site samples were significantly different than mean growth in reference sample NTC17PCSD66. However, this sample had much greater growth (0.15 mg) compared to the other reference sample (NTC17PCSD68) (0.11 mg). Mean growth results in none of the site samples were significantly different than mean growth in reference sample NTC17PCSD68, so growth is not considered impacted in any of the site samples. Toxicity concentration plots presented in Appendix E do not indicate a correlation between sediment concentrations and toxicity test results. Because none of the site samples are considered toxic based on the results of the toxicity tests, No Observed Effects Concentrations (NOECs) for benthic invertebrates were determined using the greatest concentration detected in site samples that were used for toxicity testing. The NOECs are presented in Table 3-5.

3.1.4 Risk to Benthic Invertebrates Summary/Conclusions

As presented above, biological conditions in the Pettibone Creek stream channels on the NSGL base are somewhat or severely impaired, as indicated from the mIBI scores, and the conditions in the site samples are generally lower than the biological conditions in the reference samples. If the samples had been collected during the June to October index period specified by Illinois EPA instead of in March, the scores may have been slightly higher, perhaps improving ratings for some locations into the "Good" assessment category. This could be because some insect taxa, which have small developmental stages in winter may not have been identified in the samples, but had they grown, would have been more readily identified in summer samples. An increase in insect taxa would probably result in increased mIBI scores.

The biological index and the QHEI were highly correlated (r = 0.69) (see Appendix B), with the regression coefficient ($r^2 = 0.48$) suggesting that 48% of the variability in the biological index can be attributed to the QHEI and 52% of the variability is due to other factors. There are obvious limitations to the benthic macroinvertebrate assemblage that are due to habitat conditions. For example, the habitat quality, as measured by the QHEI, was positively related to the percentage of fine particles in the samples, suggesting that one of the major habitat stressors is the high storm flows with channel scouring effects. In the downstream half of the North Branch (where site samples were collected), index scores/habitat quality were similar to those in the downstream reference samples (South Branch). Having better benthic

communities in the downstream reaches of Pettibone Creek support the suggestion that the habitat is an important factor in the benthic health in Pettibone Creek.

Based on the sediment chemistry results, concentrations of contaminants (primarily PAHs and metals such as copper, lead, and zinc) are generally higher in the North Branch of Pettibone Creek compared to the South Branch. Several plots were prepared to determine if any of the metric scores were correlated to chemical concentrations (see Appendix B). The chemicals that were plotted included copper, lead, zinc, and total PAHs; while the metrics that were plotted included the mIBI, total Taxa, EPT Percent Score, and density. There does not appear to be a correlation between chemical concentrations in the sediment and any of the metrics, which indicates that sediment chemistry may not be the reason for the "poor" to "fair" benthic community health ratings. The results of the toxicity testing support this conclusion as mean survival and mean growth in site samples were not statistically different from one or both reference samples. A summary of benthic indicators, sediment chemistry, and toxicity testing is presented in Table 3-6. In general, the greatest concentrations for select metals and PAHs in sediment with low mIBI indices were from locations NTC17PCSD53 and NTC17PCSD60. NTC17PCSD53 is the farthest upstream location on NSGL property.

3.2 UPSTREAM CONTINUING SEDIMENT CONTAMINATION SOURCE

To determine whether there is a continuing upstream source of contamination to Pettibone Creek, two types of samples were collected. Surficial sediment samples were collected in Pettibone Creek from three locations upstream of where the creek enters NSGL to determine whether the upstream sediment is contaminated. Also, two suspended sediment samples were collected from sediment traps to determine whether contaminated sediment is entrained in Pettibone Creek surface water before it enters the NSGL property boundary.

3.2.1 Comparison of Upstream Samples to Site Samples

Three surficial sediment samples (NTC17PCSD70, NTC17PCSD71, and NTC17PCSD72) were collected in Pettibone Creek, upstream of NSGL property (see Figure 3-2). The analytical results from sediment samples collected from these locations are presented in Table 3-2, and the results for select parameters are presented on Figures 3-3 through 3-5. Table 3-7 lists the maximum detected concentrations in the upstream sediment samples compared to the concentrations in the downstream samples. With the exception of a few pesticides, all of the maximum detected concentrations were in the upstream sediment samples. However, as discussed above, the concentrations of pesticides were generally pretty low throughout Pettibone Creek.

Maximum concentrations of metals and PCBs were generally detected in the farthest upstream sampling location (NTC17PCSD70). Although the greatest PCB concentrations were detected in the upstream samples, PCBs are generally not at significant concentrations in Pettibone Creek, as discussed above in Section 3.1.2.1. The elevated metal concentrations are likely reflective of the manufacturing facilities that existed in this area as discussed in Section 1.3. It is not known whether the concentrations in the sediment represent historical discharges, or whether there are current sources of metals that are still discharging to Pettibone Creek. However, the fact that elevated concentrations of metals were found in the upstream samples indicates that the upstream sediment may be a continuing source of contamination to the downstream portion of Pettibone Creek have generally decreased from the concentrations found in 2001, it suggests that the current source of metals contamination to the creek has likely decreased.

Maximum concentrations of PAHs were detected in the sampling location NTC17PCSD72, which is located immediately downstream of a storm sewer collecting water/runoff from a large section of the City of North Chicago. Also, as discussed above in Section 3.1.2.3, concentrations of PAHs in several of the 2012 samples were greater than or similar to the results in the 2001 samples. These results suggest that upstream sources are continuing to contribute to the elevated PAHs concentrations detected in Pettibone Creek downstream of where the creek enters the NSGL property.

3.2.2 Suspended Sediment Comparison to Sediment Criteria

Suspended sediment samples were collected from sediment traps positioned at the North Branch northern entry point onto NSGL property to evaluate the presence of an upstream continuing source of sediment contamination. The suspended sediment sample from NTC17PCSD50 was analyzed for the same suite of parameters as the surficial sediment samples. Suspended sediment from NTC17PCSD51 and NTC17PCSD52 were combined into a single sample in order to obtain sufficient sample for analysis. However, the combined sample NTCPCSD51-52 only provided enough sediment for metals analysis. The analytical results from suspended sediment samples along with a comparison to the ecological sediment screening criteria are presented in Table 3-8. Table 3-9 lists the maximum detected concentrations in the suspended sediment samples compared to the concentrations in the site and reference samples.

The combined sample NTC17PCSD51-52 was collected from culverts that carry Pettibone Creek under the highway interchange and also receives stormwater drainage from the former manufacturing facilities area and the northern parts of NSGL (see Figure 2-1). This sample had higher metals concentrations compared to sample NTC17PCSD50, which was collected from a culvert that received stormwater drainage from other industrial areas (see Table 3-8). The elevated metal concentrations in sample NTC17PCSD51-52 are likely reflective of the former manufacturing facilities that existed in this area as

discussed in Section 1.3. As observed on Table 3-9, the maximum detected concentrations of most metals were in the suspended sediment samples. Although grain size analysis was not conducted on the suspended sediment samples, it was expected that the sediment traps would preferentially collect the smaller sized sediment particles, because these are the particles that would be entrained in the water column. Typically, contaminant concentrations are greater in finer sediment than they are in coarser sediments. Therefore, the metals concentrations detected in the suspended sediment samples may be biased high. Nevertheless, the elevated concentrations of metals in the suspended sediment entering Navy property indicates that there are continuing sources of metals contamination to Pettibone Creek, upstream of where it enters the Navy property.

PAH, pesticide, and PCB data were only available from sample NTC17PCSD50. Several PAH and pesticide concentrations were lower in the suspended sediment sample compared to several upstream (NTC17PCSD70 through NTC17PCSD72), site (NTC17PCSD53 through NTC17PCSD56, NTC17PCSD60, NTC17PCSD61, and NTC17PCSD64), and reference (NTC17PCSD69) locations while PCB concentrations were higher in the suspended sediment sample compared to all locations. As discussed above for metals, the higher concentrations may be somewhat related to the finer particles that were likely collected in the sediment traps. Again, the suspended sediment results suggest that upstream sources are continuing to contribute to the chemical concentrations detected in Pettibone Creek downstream of where the creek enters the NSGL property.

SUMMARY OF BENTHIC COMMUNITY RESULTS SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

Otation ID	m	IBI	Total	EPT %	Scraper	MBI	Damaitu.	QH	l El
StationID	Score	Rating	Taxa	Score	% Score	score	Density	Score	Rating
Reference Sample	s								
NTC17PCSD65	21.3	Fair	21	4.83	25.34	42.22	3980	62.5	Good
NTC17PCSD66	24.1	Fair	29	4.67	23.37	46.59	2565	58.5	Good
NTC17PCSD67	30.3	Fair	31	4.9	35.42	51.35	2741	55.5	Good
NTC17PCSD68	30.5	Fair	30	1.01	36.56	68.19	4388	66	Good
NTC17PCSD69 ⁽¹⁾	13.3	Poor	17	4.1	11.52	40.58	2756	52	Fair
Site Samples									
NTC17PCSD53	14*	Poor	21	0	2.26	38.92	1806	54	Fair
NTC17PCSD54	19.4	Poor	22	0.49	4.91	51.22	2085	49.5	Fair
NTC17PCSD58 ⁽¹⁾	10.4*	Poor	13	0	1.1	32.24	1389	49.5	Fair
NTC17PCSD59	12.6*	Poor	20	2.36	3.54	38.81	2419	49.5	Fair
NTC17PCSD60	17.2*	Poor	25	7.36	3.94	54.98	837	59.5	Good
NTC17PCSD61	21.3	Fair	25	4.5	5.01	74.33	984	61	Good
NTC17PCSD62	20.8	Poor	28	0.52	11.61	41.48	1157	56.5	Good
NTC17PCSD63	23.5	Fair	30	0.9	14.59	41.33	2595	61	Good
NTC17PCSD64	20.2	Poor	24	2.81	11.69	32.37	5569	56.5	Good

- 1 These samples were located in the tributaries to Pettibone Creek
- * Sample has a statistically lower mIBI score as compared to the lowest reference sample mIBI, not including the reference tributary.
- mIBI Macroinvertebrate Index of Biotic Integrity
- EPT Ephemeroptera, Plecoptera, and Trichoptera
- MBI Modified Biotic Index
- QHEI Qualitative Habitat Evaluation Index

DETECTED CHEMICAL CONCENTRATIONS IN SEDIMENT COMPARED TO SCREENING CRITERIA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 1 OF 2

SAMPLE ID			NTC17PCSD53	NTC17PCSD54	NTC17PCSD55	NTC17PCSD56	NTC17PCSD57	NTC17PCSD58	NTC17PCSD59	NTC17PCSD60	NTC17PCSD61	NTC17PCSD62	NTC17PCSD63	NTC17PCSD64
LOCATION	Sodim	ent Screening Level	SITE	SITE	SITE	SITE	SITE, TRIB	SITE, TRIB	SITE	SITE	SITE	SITE	SITE	SITE
SAMPLE DATE	Sedilli	ent Screening Level	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12	03/29/12	03/28/12	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12
TOP DEPTH (FEET)			0	0	0	0	0	0	0	0	0	0	0	0
BOTTOM DEPTH (FEET)	Value	Source	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
POLYNUCLEAR AROMATIC HYD	ROCARBO													
2-METHYLNAPHTHALENE	0.086	Illinois EPA Tier 1	0.212 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0408 J	0.0443 U	0.0428 U	0.049 U
ACENAPHTHENE	0.58	Illinois EPA Tier 1	1.41 J	0.388	0.118	0.078 J	0.0206 U	0.0215 J	0.0447 U	0.112	0.165 J	0.0613 J	0.0428 U	0.0724 J
ACENAPHTHYLENE	0.68	Illinois EPA Tier 1	0.0482 U	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0217 U	0.0443 U	0.0428 U	0.049 U
ANTHRACENE	0.057	Illinois EPA Tier 1	2.43 J	1.34	0.306	0.26	0.0527	0.0567	0.0805 J	0.376	0.564 J	0.203	0.135	0.26
BENZO(A)ANTHRACENE	0.11	Illinois EPA Tier 1	6.38 J	2.09	1.36	1.07	0.196	0.231	0.296	1.48	0.955 J	0.708	0.586	0.961
BENZO(A)PYRENE	0.057	Illinois EPA Tier 1	5.69 J	2.44	1.72	1.29	0.238	0.248	0.397	1.85	0.933 J	0.846	0.705	1.13
BENZO(B)FLUORANTHENE	0.75	Illinois EPA Tier 1	5.76 J	2.31	2.09	1.5	0.258	0.275	0.424	2.15	0.943 J	0.876	0.809	1.25
BENZO(G,H,I)PERYLENE	0.17	Region 5	2.82 J	1.55	1.24	1.05	0.188	0.168	0.322	1.31	0.609 J	0.594	0.515	0.838
BENZO(K)FLUORANTHENE	3.6	Illinois EPA Tier 1	6.15 J	2.68	1.71	1.3	0.25	0.289	0.455	2.09	0.919 J	0.831	0.752	1.18
CHRYSENE	0.17	Illinois EPA Tier 1	7.07 J	2.47	1.93	1.56	0.269	0.332	0.44	2.17	1.04 J	0.842	0.757	1.33
DIBENZO(A,H)ANTHRACENE	0.033	Illinois EPA Tier 1	0.933 J	0.595	0.419	0.34	0.046	0.0424 J	0.105	0.508	0.252 J	0.179	0.162	0.285
FLUORANTHENE	2.8	Illinois EPA Tier 1	18.4 J	6.75	4.38	3.6	0.619	0.74	0.977	5.14	3.02 J	2.27	1.9	3.04
FLUORENE	0.035	Illinois EPA Tier 1	1.44 J	0.535	0.126	0.0905	0.0206 U	0.0214 U	0.0447 U	0.159	0.237 J	0.0443 U	0.0515 J	0.101
INDENO(1,2,3-CD)PYRENE	0.31	Illinois EPA Tier 1	3.13 J	1.44	1.1	1.01	0.146	0.156	0.31	1.3	0.568 J	0.553	0.457	0.786
NAPHTHALENE	0.15	Illinois EPA Tier 1	0.473 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.0712 J	0.0306 J	0.0443 U	0.0428 U	0.049 U
PHENANTHRENE	0.81	Illinois EPA Tier 1	13.4 J	4.96	1.96	1.66	0.291	0.398	0.465	2.32	2.39 J	1.08	0.873	1.46
PYRENE	0.2	Illinois EPA Tier 1	14.5 J	5.12	3.36	2.73	0.486	0.578	0.746	3.97	2.22 J	1.77	1.48	2.33
TOTAL PAHS	1.6	Illinois EPA Tier 1	90.2 J	34.7	21.8	17.5 J	3.04	3.54 J	5.02 J	25 J	14.9 J	10.8 J	9.18 J	15 J
PESTICIDES (MG/KG)								1						
4,4'-DDD	0.0049	Region 5	0.0138 J	0.0197 J	0.025 J	0.236 J	0.00203 J	0.00249 J	0.00637 J	0.0218 J	0.00829 J	0.0427 J	0.0665 J	0.0484 J
4,4'-DDE	0.0032	Region 5	0.0629 J	0.0491 J	0.036 J	0.131 J	0.00411 J	0.00631	0.0139 J	0.0259 J	0.0179 J	0.0366 J	0.112 J	0.0425 J
4,4'-DDT	0.0042	Region 5	0.0311 J	0.00814 J	0.0342 J	0.0526 J	0.00063 J	0.00073 J	0.00559 J	0.0361 J	0.00456 J	0.0432 J	0.134 J	0.0662 J
ALDRIN	0.0032	Region 5	0.00048 UJ	0.00046 U	0.00039 U	0.00211 U	0.0004 U	0.00041 U	0.00045 U	0.00054 U	0.00043 U	0.00055 J	0.00215 U	0.00047 U
ALPHA-CHLORDANE	0.224	Region 5	0.00048 U	0.00046 U	0.00059 J	0.00211 U	0.0004 U	0.00029 J		0.00054 U	0.00043 U	0.00045 U	0.00215 U	0.00047 U
ENDOSULFAN II	0.0019	Region 5	0.00187 J	0.00111	0.00228 J	0.00333 J	0.0009	0.0004 J	0.00027 J	0.00297	0.00046 J	0.00023 J	0.00215 U	0.00134
GAMMA-CHLORDANE	0.224	Region 5	0.00567 U	0.00171	0.0006 J	0.00666 J	0.00329 J	0.00315 U	0.00081 J	0.00288	0.00068 J	0.00028 J	0.00185 J	0.00046 J
TOTAL DDT POS	0.0042	Region 5	0.108 J	0.0769 J	0.0952 J	0.42 J	0.00677 J	0.00953 J	0.0259 J	0.0838 J	0.0308 J	0.122 J	0.312 J	0.157 J
PCBS (MG/KG)	0.0500		0.0404.11	0.0447.11	0.0050 1	0.0500.1	0.0400.11	0.0400.11		0.0400.11	0.0400.11	0.0000 1	0.0540.11	0.0440.11
AROCLOR-1260	0.0598	Region 5	0.0121 U	0.0117 U	0.0352 J	0.0586 J	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0263 J	0.0543 U	0.0119 U
METALS (MG/KG)	0.70	D'	0.40	7.00	T = ==	0.70	5.54	7.47	7.04	0.04	0.00	F 57	0.07	7 77
ARSENIC	9.79	Region 5	9.46	7.26	5.55	6.79	5.54	7.47	7.34	6.94	8.02	5.57	6.67	7.77
CADMIUM	0.99	Region 5	0.445 J	0.717 U	0.398 J	0.451 J	0.61 U	0.627 U	0.69 U	0.454 J	0.678 U	0.789 J	0.39 J	0.707 U
CHROMIUM	43.4	Region 5	23.4	19.2	14.3	17.7	15.6	15.8	19.1	18	15.2	19.9	26.5	13.9
COPPER	31.6	Region 5	68.3	43.5 J	222 J	62.2 J	37.2 J	34.7	46.2 J	89.6 J	28.5 J	50.6 J	70.3 J	92.3 J
LEAD	35.8	Region 5	96.7	30	109	67.5	21.8	29	29.6	56.8	15.4	33.7	102	64.8
MERCURY	0.174	Region 5	0.17	0.124	0.159	0.181	0.0442	0.0329 J	0.0652	0.132	0.0289 J	0.171	0.157	0.22
ZINC	121	Region 5	384 J	131	1180	224	96.7	107 J	141	329	85.5 J	56.7	299	357
MISCELLANEOUS PARAMETER:		NΙΛ	7.62	NIA.	NA	I NA	I NIA	7 72	7.65	NΙΔ	7.75	NA NA	7.4	NIA
PH MISSELL ANEQUE BARAMETER	NA NA	NA	7.63	NA	INA	NA	NA	7.73	7.65	NA	7.75	INA	7.4	NA
MISCELLANEOUS PARAMETERS TOTAL ORGANIC CARBON	NA NA	NA	22000 J	18900	18600	22800	17900	11900	11600	36700	11000 J	24100	10200	22100
TOTAL ORGANIC CARDON	INA	INA	22000 J	10900	10000	22000	17900	11900	1 1000	30700	1 1000 J	24100	10200	22100

DETECTED CHEMICAL CONCENTRATIONS IN SEDIMENT COMPARED TO SCREENING CRITERIA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 2 OF 2

SAMPLE ID	1		NTC17PCSD65	NTC17PCSD66	NTC17PCSD67	NTC17PCSD68	NTC17PCSD69	NTC17PCSD70	NTC17PCSD71	NTC17PCSD72
· · · · · · · · · · · · · · · · · · ·										
LOCATION	Sedim	ent Screening Level	REF	REF	REF	REF	REF, TRIB	UPSTREAM	UPSTREAM	UPSTREAM
SAMPLE DATE		_	03/29/12	03/29/12	03/29/12	03/29/12	03/29/12	03/28/12	03/28/12	03/28/12
TOP DEPTH (FEET)	ļ		0	0	0	0	0	0	0	0
BOTTOM DEPTH (FEET)	Value	Source	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
POLYNUCLEAR AROMATIC HYD		- 1 1	T = === :							
2-METHYLNAPHTHALENE	0.086	Illinois EPA Tier 1	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.047 U	0.144 U	0.0927 U	0.413
ACENAPHTHENE	0.58	Illinois EPA Tier 1	0.0261 U	0.0622 J	0.054 U	0.0533 U	0.0604 J	0.144 U	0.165 J	1.82
ACENAPHTHYLENE	0.68	Illinois EPA Tier 1	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.047 U	0.144 U	0.0927 U	0.0881 U
ANTHRACENE	0.057	Illinois EPA Tier 1	0.0399 J	0.185	0.181	0.0533 U	0.047 U	0.144 U	0.0927 U	2.61
BENZO(A)ANTHRACENE	0.11	Illinois EPA Tier 1	0.158	0.684	0.752	0.208	0.99	0.758	1.91	7.14
BENZO(A)PYRENE	0.057	Illinois EPA Tier 1	0.17	0.576	0.625	0.218	1.16	1.2	2.62	7.8
BENZO(B)FLUORANTHENE	0.75	Illinois EPA Tier 1	0.201	0.683	0.653	0.267	1.32	1.62	2.89	7.08
BENZO(G,H,I)PERYLENE	0.17	Region 5	0.127	0.328	0.288	0.149	0.737	1.08	2.1	4.63
BENZO(K)FLUORANTHENE	3.6	Illinois EPA Tier 1	0.196	0.707	0.645	0.252	1.35	1.18	2.94	8.56
CHRYSENE	0.17	Illinois EPA Tier 1	0.254	0.902	0.734	0.292	1.68	1.18	2.81	8.81
DIBENZO(A,H)ANTHRACENE	0.033	Illinois EPA Tier 1	0.038 J	0.158	0.0922 J	0.0533 U	0.207	0.144 U	0.689	1.91
FLUORANTHENE	2.8	Illinois EPA Tier 1	0.475	1.96	1.86	0.564	3.46	2.16	6.8	21.9
FLUORENE	0.035	Illinois EPA Tier 1	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.0872 J	0.144 U	0.215	1.76
INDENO(1,2,3-CD)PYRENE	0.31	Illinois EPA Tier 1	0.107	0.325	0.296	0.124	0.683	0.925	1.9	4.53
NAPHTHALENE	0.15	Illinois EPA Tier 1	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.047 U	0.144 U	0.0927 U	1.6
PHENANTHRENE	0.81	Illinois EPA Tier 1	0.197	1.04	0.528	0.23	1.67	0.813	3.38	17.8
PYRENE	0.2	Illinois EPA Tier 1	0.386	1.49	1.4	0.448	2.83	1.77	5.3	17.2
TOTAL PAHS	1.6	Illinois EPA Tier 1	2.35 J	9.1 J	8.05 J	2.75	16.2 J	12.7	33.7 J	116
PESTICIDES (MG/KG)										1
4,4'-DDD	0.0049	Region 5	0.00608 J	0.0234 J	0.0147 J	0.0254 J	0.0063 J	0.00079 J	0.00087 J	0.00096 J
4,4'-DDE	0.0032	Region 5	0.00601	0.026	0.0225	0.0323	0.0142	0.00221 J	0.00036 J	0.00037 J
4,4'-DDT	0.0042	Region 5	0.0008 J	0.00469 J	0.00915 J	0.00414 J	0.00794 J	0.00073 UJ	0.00375 J	0.00414 J
ALDRIN	0.0032	Region 5	0.00029 J	0.0005 U	0.00051 J	0.00069 J	0.00046 U	0.00073 U	0.00072 J	0.00044 U
ALPHA-CHLORDANE	0.224	Region 5	0.00053 U	0.0005 U	0.00169	0.00055 U	0.00046 U	0.00073 U	0.00047 U	0.00044 U
ENDOSULFAN II	0.0019	Region 5	0.00057 J	0.00205	0.00137	0.00118 J	0.00165 J	0.00224 J	0.00245	0.0025
GAMMA-CHLORDANE	0.224	Region 5	0.00318 U	0.00065 U	0.00079 U	0.00192 U	0.00037 U	0.00392 J	0.00263	0.00301 J
TOTAL DDT POS	0.0042	Region 5	0.0129 J	0.0541 J	0.0464 J	0.0618 J	0.0284 J	0.003 J	0.00498 J	0.00547 J
PCBS (MG/KG)										
AROCLOR-1260	0.0598	Region 5	0.0133 U	0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0707 J	0.0118 U	0.025 J
METALS (MG/KG)										
ARSENIC	9.79	Region 5	6.34	6.91	6.45	6.46	7.59	13.5	5.41	6.73
CADMIUM	0.99	Region 5	0.808 U	0.725 U	0.805 U	0.0866 J	0.703 U	2.4 J	1.32 J	0.679 U
CHROMIUM	43.4	Region 5	17.8	17.8	17.7	11	20.7	33.2	22.9	21.3
COPPER	31.6	Region 5	26.6	36.8	31	27.4	40.6	390 J	251 J	94.3 J
LEAD	35.8	Region 5	24	33.8	25.8	24.6	53.6	220	144	29.7
MERCURY	0.174	Region 5	0.0654	0.169	0.632	0.203	0.061	0.366	0.96	0.193
ZINC	121	Region 5	91.8 J	144 J	104 J	96 J	146 J	1580 J	848	300 J
MISCELLANEOUS PARAMETERS	S (S.U.)									
PH	NA	NA	7.34	NA	7.21	NA	NA	NA	NA	NA
MISCELLANEOUS PARAMETERS	(MG/KG)									
TOTAL ORGANIC CARBON	NA	NA	13900	18100	29000	21500	33100	71300	29000	12900 J

Notes:

Shaded cells indicate an exceedance of the sediment screening level.

Abbreviations:

J - Estimated value
U - Nondetected result

NA - Not available/Not applicable

TRIB - Tributary REF - Reference

Sources:

Illinois EPA Tier 1 - Draft Illinois EPA Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments (Illinois EPA, 2009) Region 5 – USEPA Region 5 Ecological Screening Levels, Sediment (USEPA, 2003)

TABLE 3-3

DETECTED SITE AND UPSTREAM CONCENTRATIONS COMPARED TO MAXIMUM REFERENCE CONCENTRATION SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

SAMPLE ID		NTC17PCSD53	NTC17PCSD54	NTC17PCSD55	NTC17PCSD56	NTC17PCSD57	NTC17PCSD58	NTC17PCSD59	NTC17PCSD60	NTC17PCSD61	NTC17PCSD62	NTC17PCSD63	NTC17PCSD64	NTC17PCSD70	NTC17PCSD71	NTC17PCSD72
LOCATION	Maximum	SITE	SITE	SITE	SITE	SITE, TRIB	SITE, TRIB	SITE	SITE	SITE	SITE	SITE	SITE	UPSTREAM	UPSTREAM	UPSTREAM
SAMPLE DATE	Reference	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12	03/29/12	03/28/12	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12	03/28/12	03/28/12	03/28/12
TOP DEPTH (FEET)	Concentration	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BOTTOM DEPTH (FEET)		0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
POLYNUCLEAR AROMATIC	HYDROCARBON	NS (MG/KG)														
2-METHYLNAPHTHALENE	0.054 U	0.212 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0408 J	0.0443 U	0.0428 U	0.049 U	0.144 U	0.0927 U	0.413
ACENAPHTHENE	0.0622 J	1.41 J	0.388	0.118	0.078 J	0.0206 U	0.0215 J	0.0447 U	0.112	0.165 J	0.0613 J	0.0428 U	0.0724 J	0.144 U	0.165 J	1.82
ACENAPHTHYLENE	0.054 U	0.0482 U	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0217 U	0.0443 U	0.0428 U	0.049 U	0.144 U	0.0927 U	0.0881 U
ANTHRACENE	0.185	2.43 J	1.34	0.306	0.26	0.0527	0.0567	0.0805 J	0.376	0.564 J	0.203	0.135	0.26	0.144 U	0.0927 U	2.61
BENZO(A)ANTHRACENE	0.99	6.38 J	2.09	1.36	1.07	0.196	0.231	0.296	1.48	0.955 J	0.708	0.586	0.961	0.758	1.91	7.14
BENZO(A)PYRENE	1.16	5.69 J	2.44	1.72	1.29	0.238	0.248	0.397	1.85	0.933 J	0.846	0.705	1.13	1.2	2.62	7.8
BENZO(B)FLUORANTHEN E	1.32	5.76 J	2.31	2.09	1.5	0.258	0.275	0.424	2.15	0.943 J	0.876	0.809	1.25	1.62	2.89	7.08
BENZO(G,H,I)PERYLENE	0.737	2.82 J	1.55	1.24	1.05	0.188	0.168	0.322	1.31	0.609 J	0.594	0.515	0.838	1.08	2.1	4.63
BENZO(K)FLUORANTHEN	1.35	6.15 J	2.68	1.71	1.3	0.25	0.289	0.455	2.09	0.919 J	0.831	0.752	1.18	1.18	2.94	8.56
CHRYSENE	1.68	7.07 J	2.47	1.93	1.56	0.269	0.332	0.44	2.17	1.04 J	0.842	0.757	1.33	1.18	2.81	8.81
DIBENZO(A,H)ANTHRACE	0.207	0.933 J	0.595	0.419	0.34	0.046	0.0424 J	0.105	0.508	0.252 J	0.179	0.162	0.285	0.144 U	0.689	1.91
NE																
FLUORANTHENE	3.46	18.4 J	6.75	4.38	3.6	0.619	0.74	0.977	5.14	3.02 J	2.27	1.9	3.04	2.16	6.8	21.9
FLUORENE	0.0872 J	1.44 J	0.535	0.126	0.0905	0.0206 U	0.0214 U	0.0447 U	0.159	0.237 J	0.0443 U	0.0515 J	0.101	0.144 U	0.215	1.76
INDENO(1,2,3- CD)PYRENE	0.683	3.13 J	1.44	1.1	1.01	0.146	0.156	0.31	1.3	0.568 J	0.553	0.457	0.786	0.925	1.9	4.53
NAPHTHALENE	0.054 U	0.473 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.0712 J	0.0306 J	0.0443 U	0.0428 U	0.049 U	0.144 U	0.0927 U	1.6
PHENANTHRENE	1.67	13.4 J	4.96	1.96	1.66	0.291	0.398	0.465	2.32	2.39 J	1.08	0.873	1.46	0.813	3.38	17.8
PYRENE	2.83	14.5 J	5.12	3.36	2.73	0.486	0.578	0.746	3.97	2.22 J	1.77	1.48	2.33	1.77	5.3	17.2
TOTAL PAHS	16.2 J	90.2 J	34.7	21.8	17.5 J	3.04	3.54 J	5.02 J	25 J	14.9 J	10.8 J	9.18 J	15 J	12.7	33.7 J	116
TOTAL PAHS HALFND	16.3 J	90.2 J	34.8	21.9	17.6 J	3.09	3.58 J	5.13 J	25.1 J	14.9 J	10.9 J	9.27 J	15.1 J	13.2	33.9 J	116
PESTICIDES (MG/KG)							I								I	
4,4'-DDD	0.0254 J	0.0138 J	0.0197 J	0.025 J	0.236 J	0.00203 J	0.00249 J	0.00637 J	0.0218 J	0.00829 J	0.0427 J	0.0665 J	0.0484 J	0.00079 J	0.00087 J	0.00096 J
4,4'-DDE	0.0323	0.0629 J	0.0491 J	0.036 J	0.131 J	0.00411 J	0.00631	0.0139 J	0.0259 J	0.0179 J	0.0366 J	0.112 J	0.0425 J	0.00221 J	0.00036 J	0.00037 J
4,4'-DDT	0.00915 J	0.0311 J	0.00814 J	0.0342 J		0.00063 J	0.00073 J	0.00559 J	0.0361 J	0.00456 J	0.0432 J	0.134 J	0.0662 J	0.00073 UJ	0.00375 J	0.00414 J
ALDRIN	0.00069 J 0.00169	0.00048 UJ 0.00048 U	0.00046 U	0.00039 U 0.00059 J	0.00211 U	0.0004 U	0.00041 U	0.00045 U	0.00054 U 0.00054 U	0.00043 U	0.00055 J	0.00215 U	0.00047 U	0.00073 U	0.00072 J	0.00044 U 0.00044 U
ALPHA-CHLORDANE ENDOSULFAN II	0.00205	0.00048 U 0.00187 J	0.00046 U 0.00111	0.00059 J 0.00228 J	0.00211 U 0.00333 J	0.0004 U 0.0009	0.00029 J 0.0004 J	0.00045 U 0.00027 J	0.00054 0	0.00043 U 0.00046 J	0.00045 U 0.00023 J	0.00215 U 0.00215 U	0.00047 U 0.00134	0.00073 U 0.00224 J	0.00047 U 0.00245	0.00044 0
GAMMA-CHLORDANE	0.00203 0.00318 U	0.00167 J	0.00171	0.00228 J 0.0006 J		0.0009 0.00329 J	0.0004 J 0.00315 U	0.00027 J	0.00297	0.00048 J	0.00023 J	0.00213 U	0.00134 0.00046 J	0.00224 J 0.00392 J	0.00243	0.0023 0.00301 J
TOTAL DDT HALFND	0.0618 J	0.00367 U	0.0769 J	0.0008 J		0.00329 J 0.00677 J	0.00953 J	0.0051 J	0.0838 J	0.0008 J	0.122 J	0.312 J	0.00048 J	0.00392 J 0.00337 J	0.00263 0.00498 J	0.00547 J
TOTAL DDT POS	0.0618 J	0.108 J	0.0769 J	0.0952 J		0.00677 J	0.00953 J	0.0259 J	0.0838 J	0.0308 J	0.122 J	0.312 J	0.157 J	0.0037 J	0.00498 J	0.00547 J
PCBS (MG/KG)	0.0010 0	0.100 0	0.0103 0	0.0002 0	0.42 0	0.00077 0	0.00000	0.0200 0	0.0000 0	0.0000 0	0.122 0	0.012 0	0.107 0	0.000 0	0.00430 0	0.00047 0
AROCLOR-1260	0.0139 U	0.0121 U	0.0117 U	0.0352 J	0.0586 J	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0263 J	0.0543 U	0.0119 U	0.0707 J	0.0118 U	0.025 J
METALS (MG/KG)		*****							***************************************							
ARSENIC	7.59	9.46	7.26	5.55	6.79	5.54	7.47	7.34	6.94	8.02	5.57	6.67	7.77	13.5	5.41	6.73
CADMIUM	0.808 U	0.445 J	0.717 U	0.398 J	0.451 J	0.61 U	0.627 U	0.69 U	0.454 J	0.678 U	0.789 J	0.39 J	0.707 U	2.4 J	1.32 J	0.679 U
CHROMIUM	20.7	23.4	19.2	14.3	17.7	15.6	15.8	19.1	18	15.2	19.9	26.5	13.9	33.2	22.9	21.3
COPPER	40.6	68.3	43.5 J	222 J	62.2 J	37.2 J	34.7	46.2 J	89.6 J	28.5 J	50.6 J	70.3 J	92.3 J	390 J	251 J	94.3 J
LEAD	53.6	96.7	30	109	67.5	21.8	29	29.6	56.8	15.4	33.7	102	64.8	220	144	29.7
MERCURY	0.632	0.17	0.124	0.159	0.181	0.0442	0.0329 J	0.0652	0.132	0.0289 J	0.171	0.157	0.22	0.366	0.96	0.193
ZINC	146 J	384 J	131	1180	224	96.7	107 J	141	329	85.5 J	56.7	299	357	1580 J	848	300 J
MISCELLANEOUS PARAME																
PH	7.34	7.63	NA	NA	NA	NA	7.73	7.65	NA	7.75	NA	7.4	NA	NA	NA	NA
MISCELLANEOUS PARAME											T					
TOTAL ORGANIC CARBON	33100	22000 J	18900	18600	22800	17900	11900	11600	36700	11000 J	24100	10200	22100	71300	29000	12900 J
					-										•	-

Notes:

Shaded cells indicate an exceedance of the maximum reference concentration (samples NTC17PCSD65 to NTC17PCSD69).

Abbreviations:

J - Estimated value

U - Nondetected result

NA - Not available/Not applicable

TRIB - Tributary

SUMMARY OF HYALELLA AZTECA SURVIVAL AND GROWTH RESULTS SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

	l I	lean Weight of Survivo	ors
Station ID	Mean Survival (%)	(mg) ⁽¹⁾	Mean Growth (mg) ⁽²⁾
Laboratory Control	•		•
	97.5	0.08925	0.0875
Reference Samples	•		•
NTC17PCSD66	95	0.1606	0.15
NTC17PCSD68	87.5	0.124	0.1088
Site Samples			
NTC17PCSD53	88.8	0.116	0.1025
NTC17PCSD54	92.5	0.1286	0.1175
NTC17PCSD60	86.3	0.1069	0.0912
NTC17PCSD61	93.8	0.0955	0.0875
NTC17PCSD63	93.8	0.1281	0.12
NTC17PCSD64	82.5	0.103	0.0825

Appendix E presents the complete laboratory report for the toxicity tests.

- 1 Dry weight, Mean weight of all survivors
- 2 Dry weight, Individual weight based on 10 organisms per chamber

TABLE 3-5

DETERMINATION OF SEDIMENT NO OBSERVED EFFECTS CONCENTRATIONS SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

Parameter	NOEC	NTC17PCSD53	NTC17PCSD54	NTC17PCSD60	NTC17PCSD61	NTC17PCSD63	NTC17PCSD64	NTC17PCSD66	NTC17PCSD68
POLYNUCLEAR AROMATIC HYD	ROCARBO	NS (MG/KG)							
2-METHYLNAPHTHALENE	0.212 J	0.212 J	0.0929 U	0.055 U	0.0408 J	0.0428 U	0.049 U	0.0485 U	0.0533 U
ACENAPHTHENE	1.41 J	1.41 J	0.388	0.112	0.165 J	0.0428 U	0.0724 J	0.0622 J	0.0533 U
ACENAPHTHYLENE	0.0929 U	0.0482 U	0.0929 U	0.055 U	0.0217 U	0.0428 U	0.049 U	0.0485 U	0.0533 U
ANTHRACENE	2.43 J	2.43 J	1.34	0.376	0.564 J	0.135	0.26	0.185	0.0533 U
BENZO(A)ANTHRACENE	6.38 J	6.38 J	2.09	1.48	0.955 J	0.586	0.961	0.684	0.208
BENZO(A)PYRENE	5.69 J	5.69 J	2.44	1.85	0.933 J	0.705	1.13	0.576	0.218
BENZO(B)FLUORANTHENE	5.76 J	5.76 J	2.31	2.15	0.943 J	0.809	1.25	0.683	0.267
BENZO(G,H,I)PERYLENE	2.82 J	2.82 J	1.55	1.31	0.609 J	0.515	0.838	0.328	0.149
BENZO(K)FLUORANTHENE	6.15 J	6.15 J	2.68	2.09	0.919 J	0.752	1.18	0.707	0.252
CHRYSENE	7.07 J	7.07 J	2.47	2.17	1.04 J	0.757	1.33	0.902	0.292
DIBENZO(A,H)ANTHRACENE	0.933 J	0.933 J	0.595	0.508	0.252 J	0.162	0.285	0.158	0.0533 U
FLUORANTHENE	18.4 J	18.4 J	6.75	5.14	3.02 J	1.9	3.04	1.96	0.564
FLUORENE	1.44 J	1.44 J	0.535	0.159	0.237 J	0.0515 J	0.101	0.0485 U	0.0533 U
INDENO(1,2,3-CD)PYRENE	3.13 J	3.13 J	1.44	1.3	0.568 J	0.457	0.786	0.325	0.124
NAPHTHALENE	0.473 J	0.473 J	0.0929 U	0.0712 J	0.0306 J	0.0428 U	0.049 U	0.0485 U	0.0533 U
PHENANTHRENE	13.4 J	13.4 J	4.96	2.32	2.39 J	0.873	1.46	1.04	0.23
PYRENE	14.5 J	14.5 J	5.12	3.97	2.22 J	1.48	2.33	1.49	0.448
TOTAL PAHS	90.2 J	90.2 J	34.7	25 J	14.9 J	9.18 J	15 J	9.1 J	2.75
PESTICIDES (MG/KG)	•	•		•		•	•	•	
4,4'-DDD	0.0665 J	0.0138 J	0.0197 J	0.0218 J	0.00829 J	0.0665 J	0.0484 J	0.0234 J	0.0254 J
4,4'-DDE	0.112 J	0.0629 J	0.0491 J	0.0259 J	0.0179 J	0.112 J	0.0425 J	0.026	0.0323
4,4'-DDT	0.134 J	0.0311 J	0.00814 J	0.0361 J	0.00456 J	0.134 J	0.0662 J	0.00469 J	0.00414 J
ALDRIN	0.0007 J	0.0005 UJ	0.00046 U	0.00054 U	0.00043 U	0.00215 U	0.00047 U	0.0005 U	0.00069 J
ALPHA-CHLORDANE	0.0022 U	0.0005 U	0.00046 U	0.00054 U	0.00043 U	0.00215 U	0.00047 U	0.0005 U	0.00055 U
ENDOSULFAN II	0.003	0.0019 J	0.00111	0.00297	0.00046 J	0.00215 U	0.00134	0.00205	0.00118 J
GAMMA-CHLORDANE	0.0029	0.0057 U	0.00171	0.00288	0.00068 J	0.00185 J	0.00046 J	0.00065 U	0.00192 U
TOTAL DDT POS	0.312 J	0.108 J	0.0769 J	0.0838 J	0.0308 J	0.312 J	0.157 J	0.0541 J	0.0618 J
PCBS (MG/KG)									
AROCLOR-1260	0.0543 U	0.0121 U	0.0117 U	0.0136 U	0.0109 U	0.0543 U	0.0119 U	0.0125 U	0.0138 U
METALS (MG/KG)									
ARSENIC	9.46	9.46	7.26	6.94	8.02	6.67	7.77	6.91	6.46
CADMIUM	0.454 J	0.445 J	0.717 U	0.454 J	0.678 U	0.39 J	0.707 U	0.725 U	0.0866 J
CHROMIUM	26.5	23.4	19.2	18	15.2	26.5	13.9	17.8	11
COPPER	92.3 J	68.3	43.5 J	89.6 J	28.5 J	70.3 J	92.3 J	36.8	27.4
LEAD	102	96.7	30	56.8	15.4	102	64.8	33.8	24.6
MERCURY	0.22	0.17	0.124	0.132	0.0289 J	0.157	0.22	0.169	0.203
ZINC	384 J	384 J	131	329	85.5 J	299	357	144 J	96 J

Shaded cells are the maximum detected concentrations for each parameter. If the parameter was not detected in any sample, than the maximum detection limit is shaded. NOEC - No observed effects concentration (maximum detected concentration in the toxicity test samples because none of the samples were considered toxic)

TABLE 3-6

COMPARISON OF BENTHIC COMMUNITY RESULTS, SEDIMENT CHEMISTRY, AND TOXICITY TESTING SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

	Benthic	Community	Indicators	Sediment	Chemistry C	Concentratio	ns (mg/kg)	Toxicity Te	est Results
StationID	mlBl	Index Rating	QHEI score	Copper	Lead	Zinc	PAHs	Percent Survival	Growth
Reference Sample	s					•			•
NTC17PCSD65	21.3	Fair	62.5	26.6	24	91.8	2.4	NA	NA
NTC17PCSD66	24.1	Fair	58.5	36.8	33.8	144	9.1	95	0.15
NTC17PCSD67	30.3	Fair	55.5	31	25.8	104	8.1	NA	NA
NTC17PCSD68	30.5	Fair	66	27.4	24.6	96	2.8	87.5	0.1088
NTC17PCSD69 ⁽¹⁾	13.3	Poor	52	40.6	53.6	146	16.2	NA	NA
Site Samples									
NTC17PCSD53	14	Poor	54	68.3	96.7	384	90.2	88.8	0.1025
NTC17PCSD54	19.4	Poor	49.5	43.5	30	131	34.7	92.5	0.1175
NTC17PCSD58 ⁽¹⁾	10.4	Poor	49.5	34.7	29	107	3.5	NA	NA
NTC17PCSD59	12.6	Poor	49.5	46.2	29.6	141	5	NA	NA
NTC17PCSD60	17.2	Poor	59.5	89.6	56.8	329	25	86.3	0.0912
NTC17PCSD61	21.3	Fair	61	28.5	15.4	85.5	14.9	93.8	0.0875
NTC17PCSD62	20.8	Poor	56.5	50.6	33.7	56.7	10.8	NA	NA
NTC17PCSD63	23.5	Fair	61	70.3	102	299	9.2	93.8	0.12
NTC17PCSD64	20.2	Poor	56.5	92.3	64.8	357	15	82.5	0.0825

Footnotes:

1 - These samples were located in the tributaries to Pettibone Creek

Shading Rationale:

Benthic Community Indicator:

- mIBI > 2.3 index units lower than lowest reference sample index (excluding reference tributary)
- QHEI score less than 55 which is the threshold between good and fair conditions.

Sediment Chemistry:

- Four greatest concentrations for each parameter.

Toxicity Test:

-Survival less than 80 percent or growth statistically different than both reference samples (none met these criteria).

mIBI - Macroinvertebrate Index of Biotic Integrity

QHEI - Qualitative Habitat Evaluation Index

NA - Not applicable

TABLE 3-7

DETECTED SITE CONCENTRATIONS COMPARED TO MAXIMUM UPSTREAM CONCENTRATION SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES **GREAT LAKES, ILLINOIS**

SAMPLE ID		NTC17PCSD53	NTC17PCSD54	NTC17PCSD55	NTC17PCSD56	NTC17PCSD57	NTC17PCSD58	NTC17PCSD59	NTC17PCSD60	NTC17PCSD61	NTC17PCSD62	NTC17PCSD63	NTC17PCSD64
LOCATION	Maximum	SITE	SITE	SITE	SITE	SITE, TRIB	SITE, TRIB	SITE	SITE	SITE	SITE	SITE	SITE
SAMPLE DATE	Upstream	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12	03/29/12	03/28/12	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12
TOP DEPTH (FEET)	Concentration	0	0	00/21/12	00/21/12	0	00/25/12	00/20/12	0	0	00/27/12	0 0 0	00/21/12
BOTTOM DEPTH (FEET)		0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
POLYNUCLEAR AROMATIC H	YDROCARBONS		01.10	00	0.10	0.10	00	00	0.10	0.10	0.10	00	00
2-METHYLNAPHTHALENE	0.413	0.212 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0408 J	0.0443 U	0.0428 U	0.049 U
ACENAPHTHENE	1.82	1.41 J	0.388	0.118	0.078 J	0.0206 U	0.0215 J	0.0447 U	0.112	0.165 J	0.0613 J	0.0428 U	0.0724 J
ACENAPHTHYLENE	0.144 U	0.0482 U	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0217 U	0.0443 U	0.0428 U	0.049 U
ANTHRACENE	2.61	2.43 J	1.34	0.306	0.26	0.0527	0.0567	0.0805 J	0.376	0.564 J	0.203	0.135	0.26
BENZO(A)ANTHRACENE	7.14	6.38 J	2.09	1.36	1.07	0.196	0.231	0.296	1.48	0.955 J	0.708	0.586	0.961
BENZO(A)PYRENE	7.8	5.69 J	2.44	1.72	1.29	0.238	0.248	0.397	1.85	0.933 J	0.846	0.705	1.13
BENZO(B)FLUORANTHENE	7.08	5.76 J	2.31	2.09	1.5	0.258	0.275	0.424	2.15	0.943 J	0.876	0.809	1.25
BENZO(G,H,I)PERYLENE	4.63	2.82 J	1.55	1.24	1.05	0.188	0.168	0.322	1.31	0.609 J	0.594	0.515	0.838
BENZO(K)FLUORANTHENE	8.56	6.15 J	2.68	1.71	1.3	0.25	0.289	0.455	2.09	0.919 J	0.831	0.752	1.18
CHRYSENE	8.81	7.07 J	2.47	1.93	1.56	0.269	0.332	0.44	2.17	1.04 J	0.842	0.757	1.33
DIBENZO(A,H)ANTHRACENE	1.91	0.933 J	0.595	0.419	0.34	0.046	0.0424 J	0.105	0.508	0.252 J	0.179	0.162	0.285
FLUORANTHENE	21.9	18.4 J	6.75	4.38	3.6	0.619	0.74	0.977	5.14	3.02 J	2.27	1.9	3.04
FLUORENE	1.76	1.44 J	0.535	0.126	0.0905	0.0206 U	0.0214 U	0.0447 U	0.159	0.237 J	0.0443 U	0.0515 J	0.101
INDENO(1,2,3-CD)PYRENE	4.53	3.13 J	1.44	1.1	1.01	0.146	0.156	0.31	1.3	0.568 J	0.553	0.457	0.786
NAPHTHALENE	1.6	0.473 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.0712 J	0.0306 J	0.0443 U	0.0428 U	0.049 U
PHENANTHRENE	17.8	13.4 J	4.96	1.96	1.66	0.291	0.398	0.465	2.32	2.39 J	1.08	0.873	1.46
PYRENE	17.2	14.5 J	5.12	3.36	2.73	0.486	0.578	0.746	3.97	2.22 J	1.77	1.48	2.33
TOTAL PAHS	116	90.2 J	34.7	21.8	17.5 J	3.04	3.54 J	5.02 J	25 J	14.9 J	10.8 J	9.18 J	15 J
PESTICIDES (MG/KG)													
4,4'-DDD	0.00096 J	0.0138 J	0.0197 J	0.025 J	0.236 J	0.00203 J	0.00249 J	0.00637 J	0.0218 J	0.00829 J	0.0427 J	0.0665 J	0.0484 J
4,4'-DDE	0.00221 J	0.0629 J	0.0491 J	0.036 J	0.131 J	0.00411 J	0.00631	0.0139 J	0.0259 J	0.0179 J	0.0366 J	0.112 J	0.0425 J
4,4'-DDT	0.00414 J	0.0311 J	0.00814 J	0.0342 J	0.0526 J	0.00063 J	0.00073 J	0.00559 J	0.0361 J	0.00456 J	0.0432 J	0.134 J	0.0662 J
ALDRIN	0.00072	0.00048 UJ	0.00046 U	0.00039 U	0.00211 U	0.0004 U	0.00041 U	0.00045 U	0.00054 U	0.00043 U	0.00055 J	0.00215 U	0.00047 U
ALPHA-CHLORDANE	0.00073 U	0.00048 U	0.00046 U	0.00059 J	0.00211 U	0.0004 U	0.00029 J	0.00045 U	0.00054 U	0.00043 U	0.00045 U	0.00215 U	0.00047 U
ENDOSULFAN II	0.0025	0.00187 J	0.00111	0.00228 J	0.00333 J	0.0009	0.0004 J	0.00027 J	0.00297	0.00046 J	0.00023 J	0.00215 U	0.00134
GAMMA-CHLORDANE	0.00392 J	0.00567 U	0.00171	0.0006 J	0.00666 J	0.00329 J	0.00315 U	0.00081 J	0.00288	0.00068 J	0.00028 J	0.00185 J	0.00046 J
TOTAL DDT POS	0.00547 J	0.108 J	0.0769 J	0.0952 J	0.42 J	0.00677 J	0.00953 J	0.0259 J	0.0838 J	0.0308 J	0.122 J	0.312 J	0.157 J
PCBS (MG/KG) AROCLOR-1260	0.0707 J	0.0121 U	0.0117 U	0.0352 J	0.0586 J	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0263 J	0.0543 U	0.0119 U
METALS (MG/KG)	0.0707 3	0.0121 0	0.0117 0	0.0352 3	0.0000 J	0.0102 0	0.0103 0	0.0113 0	0.0130 0	0.0109 0	0.0203 J	0.0343 0	0.0119 0
ARSENIC	13.5	9.46	7.26	5.55	6.79	5.54	7.47	7.34	6.94	8.02	5.57	6.67	7.77
CADMIUM	2.4 J	0.445 J	0.717 U	0.398 J	0.451 J	0.61 U	0.627 U	0.69 U	0.454 J	0.678 U	0.789 J	0.39 J	0.707 U
CHROMIUM	33.2	23.4	19.2	14.3	17.7	15.6	15.8	19.1	18	15.2	19.9	26.5	13.9
COPPER	390 J	68.3	43.5 J	222 J	62.2 J	37.2 J	34.7	46.2 J	89.6 J	28.5 J	50.6 J	70.3 J	92.3 J
LEAD	220	96.7	30	109	67.5	21.8	29	29.6	56.8	15.4	33.7	102	64.8
MERCURY	0.96	0.17	0.124	0.159	0.181	0.0442	0.0329 J	0.0652	0.132	0.0289 J	0.171	0.157	0.22
ZINC	1580 J	384 J	131	1180	224	96.7	107 J	141	329	85.5 J	56.7	299	357
MISCELLANEOUS PARAMETI		1 00.0		1 1100		00	1 10.0		020	00.0 0		1 -00	
PH PH	7.34	7.63	NA	NA	NA	NA	7.73	7.65	NA	7.75	NA	7.4	NA
MISCELLANEOUS PARAMETI		, ,,,,,,	1 1711	1 101	1 1771	14/1	,	1 7.00	1973	7.1.0	1 14/1	1	1 177
TOTAL ORGANIC CARBON	33100	22000 J	18900	18600	22800	17900	11900	11600	36700	11000 J	24100	10200	22100
	30100		.0000	. 3000		.,,,,,,	. 1000	. 1000	23700	. 1000 0		.0200	

Shaded cells indicate an exceedance of the maximum upstream concentration (samples NTC17PCSD70 to NTC17PCSD72).

Abbreviations: J - Estimated value

U - Nondetected result
NA - Not available/Not applicable
TRIB - Tributary

DETECTED CHEMICAL CONCENTRATIONS IN SUSPENDED SEDIMENT COMPARED TO SCREENING CRITERIA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

NSAMPLE	Sedimer	nt Screening Level	NTC17PCSD50	NTC17PCSD51-52
SAMPLE DATE	Value	Source	06/14/2012	06/14/2012
POLYNUCLEAR AROMATIC H	YDROCA	RBONS (MG/KG)		
2-METHYLNAPHTHALENE	0.086	Illinois EPA Tier 1	0.0357 U	NA
ACENAPHTHENE	0.58	Illinois EPA Tier 1	0.0808	NA
ACENAPHTHYLENE	0.68	Illinois EPA Tier 1	0.0357 U	NA
ANTHRACENE	0.057	Illinois EPA Tier 1	0.165	NA
BENZO(A)ANTHRACENE	0.11	Illinois EPA Tier 1	0.722	NA
BENZO(A)PYRENE	0.057	Illinois EPA Tier 1	0.922	NA
BENZO(B)FLUORANTHENE	0.75	Illinois EPA Tier 1	1.11	NA
BENZO(G,H,I)PERYLENE	0.17	Region 5	0.552	NA
BENZO(K)FLUORANTHENE	3.6	Illinois EPA Tier 1	1.02	NA
CHRYSENE	0.17	Illinois EPA Tier 1	1.06	NA
DIBENZO(A,H)ANTHRACENE	0.033	Illinois EPA Tier 1	0.123	NA
FLUORANTHENE	2.8	Illinois EPA Tier 1	2.38	NA
FLUORENE	0.035	Illinois EPA Tier 1	0.0858	NA
INDENO(1,2,3-CD)PYRENE	0.31	Illinois EPA Tier 1	0.526	NA
NAPHTHALENE	0.15	Illinois EPA Tier 1	0.0357 U	NA
PHENANTHRENE	0.81	Illinois EPA Tier 1	1.19	NA
PYRENE	0.2	Illinois EPA Tier 1	1.84	NA
TOTAL PAHS	1.6	Illinois EPA Tier 1	11.8	NA
PESTICIDES (MG/KG)				
4,4'-DDD	0.0049	Region 5	0.00173 UJ	NA
4,4'-DDE	0.0032	Region 5	0.00335 J	NA
4,4'-DDT	0.0042	Region 5	0.00793 J	NA
ALDRIN	0.0032	Region 5	0.00173 U	NA
ALPHA-CHLORDANE	0.224	Region 5	0.00173 U	NA
ENDOSULFAN II	0.0019	Region 5	0.00473 J	NA
GAMMA-CHLORDANE	0.224	Region 5	0.00961 J	NA
TOTAL DDT POS	0.0042	Region 5	0.0113	NA
PCBS (MG/KG)				
AROCLOR-1260	0.0598	Region 5	0.334 J	NA
METALS (MG/KG)				
ARSENIC	9.79	Region 5	27	8.94
CADMIUM	0.99	Region 5	0.823	1.44
CHROMIUM	43.4	Region 5	16.3	31.9
COPPER	31.6	Region 5	104	509
LEAD	35.8	Region 5	62.7	258
MERCURY	0.174	Region 5	0.257 J	0.892 J
ZINC	121	Region 5	482	2960

Notes

Shaded cells indicate an exceedance of the sediment screening level.

Sources:

Illinois EPA Tier 1 - Draft Illinois EPA Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments (Illinois EPA, 2009)

Region 5 – USEPA Region 5 Ecological Screening Levels, Sediment (USEPA, 2003)

Abbreviations:

- J Estimated value
- U Nondetected result
- NA Not analyzed

TABLE 3-9

DETECTED CHEMICAL CONCENTRATIONS IN SEDIMENT COMPARED TO MAXIMUM SUSPENDED SEDIMENT CONCENTRATION SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 1 OF 2

SAMPLE ID		NTC17PCSD53	NTC17PCSD54	NTC17PCSD55	NTC17PCSD56	NTC17PCSD57	NTC17PCSD58	NTC17PCSD59	NTC17PCSD60	NTC17PCSD61	NTC17PCSD62	NTC17PCSD63	NTC17PCSD64
LOCATION	Maximum	SITE	SITE	SITE	SITE	SITE, TRIB	SITE, TRIB	SITE	SITE	SITE	SITE	SITE	SITE
SAMPLE DATE	Suspended	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12	03/29/12	03/28/12	03/28/12	03/28/12	03/27/12	03/27/12	03/27/12
TOP DEPTH (FEET)	Sediment	03/28/12	03/28/12	03/21/12	03/21/12	03/21/12	03/29/12	03/26/12	03/26/12	03/26/12	03/21/12	03/21/12	03/21/12
BOTTOM DEPTH (FEET)	Concentration	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
POLYNUCLEAR AROMATIC HYD	ROCARBONS (MG		0.10	0.13	0.10	0.10	0.10	0.13	0.10	0.10	0.10	0.10	0.13
2-METHYLNAPHTHALENE	0.0357 U	0.212 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0408 J	0.0443 U	0.0428 U	0.049 U
ACENAPHTHENE	0.0808	1.41 J	0.388	0.118	0.078 J	0.0206 U	0.0211 J	0.0447 U	0.112	0.165 J	0.0613 J	0.0428 U	0.0724 J
ACENAPHTHYLENE	0.0357 U	0.0482 U	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.055 U	0.0217 U	0.0443 U	0.0428 U	0.049 U
ANTHRACENE	0.165	2.43 J	1.34	0.306	0.26	0.0527	0.0567	0.0805 J	0.376	0.564 J	0.203	0.135	0.26
BENZO(A)ANTHRACENE	0.722	6.38 J	2.09	1.36	1.07	0.196	0.231	0.296	1.48	0.955 J	0.708	0.586	0.961
BENZO(A)PYRENE	0.922	5.69 J	2.44	1.72	1.29	0.238	0.248	0.397	1.85	0.933 J	0.846	0.705	1.13
BENZO(B)FLUORANTHENE	1.11	5.76 J	2.31	2.09	1.5	0.258	0.275	0.424	2.15	0.943 J	0.876	0.809	1.25
BENZO(G,H,I)PERYLENE	0.552	2.82 J	1.55	1.24	1.05	0.188	0.168	0.322	1.31	0.609 J	0.594	0.515	0.838
BENZO(K)FLUORANTHENE	1.02	6.15 J	2.68	1.71	1.3	0.25	0.289	0.455	2.09	0.919 J	0.831	0.752	1.18
CHRYSÈŃE	1.06	7.07 J	2.47	1.93	1.56	0.269	0.332	0.44	2.17	1.04 J	0.842	0.757	1.33
DIBENZO(A,H)ANTHRACENE	0.123	0.933 J	0.595	0.419	0.34	0.046	0.0424 J	0.105	0.508	0.252 J	0.179	0.162	0.285
FLUORANTHENE	2.38	18.4 J	6.75	4.38	3.6	0.619	0.74	0.977	5.14	3.02 J	2.27	1.9	3.04
FLUORENE	0.0858	1.44 J	0.535	0.126	0.0905	0.0206 U	0.0214 U	0.0447 U	0.159	0.237 J	0.0443 U	0.0515 J	0.101
INDENO(1,2,3-CD)PYRENE	0.526	3.13 J	1.44	1.1	1.01	0.146	0.156	0.31	1.3	0.568 J	0.553	0.457	0.786
NAPHTHALENE	0.0357 U	0.473 J	0.0929 U	0.0389 U	0.0426 U	0.0206 U	0.0214 U	0.0447 U	0.0712 J	0.0306 J	0.0443 U	0.0428 U	0.049 U
PHENANTHRENE	1.19	13.4 J	4.96	1.96	1.66	0.291	0.398	0.465	2.32	2.39 J	1.08	0.873	1.46
PYRENE	1.84	14.5 J	5.12	3.36	2.73	0.486	0.578	0.746	3.97	2.22 J	1.77	1.48	2.33
TOTAL PAHS	11.8	90.2 J	34.7	21.8	17.5 J	3.04	3.54 J	5.02 J	25 J	14.9 J	10.8 J	9.18 J	15 J
PESTICIDES (MG/KG)													
4,4'-DDD	0.0017 UJ	0.0138 J	0.0197 J	0.025 J	0.236 J	0.00203 J	0.00249 J	0.00637 J	0.0218 J	0.00829 J	0.0427 J	0.0665 J	0.0484 J
4,4'-DDE	0.0034 J	0.0629 J	0.0491 J	0.036 J	0.131 J	0.00411 J	0.00631	0.0139 J	0.0259 J	0.0179 J	0.0366 J	0.112 J	0.0425 J
4,4'-DDT	0.0079 J	0.0311 J	0.00814 J	0.0342 J	0.0526 J	0.00063 J	0.00073 J	0.00559 J	0.0361 J	0.00456 J	0.0432 J	0.134 J	0.0662 J
ALDRIN	0.0017 U	0.00048 UJ	0.00046 U	0.00039 U	0.00211 U	0.0004 U	0.00041 U	0.00045 U	0.00054 U	0.00043 U	0.00055 J	0.00215 U	0.00047 U
ALPHA-CHLORDANE	0.0017 U	0.00048 U	0.00046 U	0.00059 J	0.00211 U	0.0004 U	0.00029 J	0.00045 U	0.00054 U	0.00043 U	0.00045 U	0.00215 U	0.00047 U
ENDOSULFAN II	0.0047 J	0.00187 J	0.00111	0.00228 J	0.00333 J	0.0009	0.0004 J	0.00027 J	0.00297	0.00046 J	0.00023 J	0.00215 U	0.00134
GAMMA-CHLORDANE	0.0096 J	0.00567 U	0.00171	0.0006 J	0.00666 J	0.00329 J	0.00315 U	0.00081 J	0.00288	0.00068 J	0.00028 J	0.00185 J	0.00046 J
TOTAL DDT POS	0.0113	0.108 J	0.0769 J	0.0952 J	0.42 J	0.00677 J	0.00953 J	0.0259 J	0.0838 J	0.0308 J	0.122 J	0.312 J	0.157 J
PCBS (MG/KG) AROCLOR-1016	0.0438 U	0.0121 U	0.0117 U	0.0098 U	0.0532 U	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0113 U	0.0543 U	0.0119 U
AROCLOR-1016 AROCLOR-1221	0.0438 U	0.0121 U 0.0121 U	0.0117 U	0.0098 U	0.0532 U 0.0532 U	0.0102 U 0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0113 U	0.0543 U	0.0119 U 0.0119 U
AROCLOR-1221 AROCLOR-1232	0.0438 U	0.0121 U	0.0117 U	0.0098 U	0.0532 U	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0113 U	0.0543 U	0.0119 U
AROCLOR-1232 AROCLOR-1242	0.0438 U	0.0121 U	0.0117 U	0.0098 U	0.0532 U	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0113 U	0.0543 U	0.0119 U
AROCLOR-1242 AROCLOR-1248	0.0438 U	0.0121 U	0.0117 U	0.0098 U	0.0532 U	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0113 U	0.0543 U	0.0119 U
AROCLOR-1254	0.0438 U	0.0121 U	0.0117 U	0.0098 U	0.0532 U	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0113 U	0.0543 U	0.0119 U
AROCLOR-1260	0.334 J	0.0121 U	0.0117 U	0.0098 U	0.0586 J	0.0102 U	0.0103 U	0.0113 U	0.0136 U	0.0109 U	0.0113 U	0.0543 U	0.0119 U
METALS (MG/KG)	1 0.00 7 0	1 0.0121 0	3.5117 0	, 0.000 2 0	3.0000	3.0102 0	3.0.00	3.01100	3.0100 0	3.0.00	3.0200 0	3.00.00	3.0110 0
ARSENIC	27	9.46	7.26	5.55	6.79	5.54	7.47	7.34	6.94	8.02	5.57	6.67	7.77
CADMIUM	1.44	0.445 J	0.717 U	0.398 J	0.451 J	0.61 U	0.627 U	0.69 U	0.454 J	0.678 U	0.789 J	0.39 J	0.707 U
CHROMIUM	31.9	23.4	19.2	14.3	17.7	15.6	15.8	19.1	18	15.2	19.9	26.5	13.9
COPPER	509	68.3	43.5 J	222 J	62.2 J	37.2 J	34.7	46.2 J	89.6 J	28.5 J	50.6 J	70.3 J	92.3 J
LEAD	258	96.7	30	109	67.5	21.8	29	29.6	56.8	15.4	33.7	102	64.8
MERCURY	0.892 J	0.17	0.124	0.159	0.181	0.0442	0.0329 J	0.0652	0.132	0.0289 J	0.171	0.157	0.22
ZINC	2960	384 J	131	1180	224	96.7	107 J	141	329	85.5 J	56.7	299	357
	+	+		+	··				V=V				<u> </u>

DETECTED CHEMICAL CONCENTRATIONS IN SEDIMENT COMPARED TO MAXIMUM SUSPENDED SEDIMENT CONCENTRATION SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 2 OF 2

OAMBLE ID	1	NITO47DCCDCC	NTC47DCCDCC	NTC47DCCDC7	NTC47DCCDCC	NTC47DCCDCC	NTC47DCCD70	NTC47DCCD74	NTC47DCCD70
SAMPLE ID	Maxi	NTC17PCSD65	NTC17PCSD66	NTC17PCSD67	NTC17PCSD68	NTC17PCSD69	NTC17PCSD70	NTC17PCSD71	NTC17PCSD72
LOCATION	Suspe	REF	REF	REF	REF	REF, TRIB	UPSTREAM	UPSTREAM	UPSTREAM
SAMPLE DATE	Sedi	03/29/12	03/29/12	03/29/12	03/29/12	03/29/12	03/28/12	03/28/12	03/28/12
TOP DEPTH (FEET)	Concer	0	0	0	0	0	0	0	0
BOTTOM DEPTH (FEET)		0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
POLYNUCLEAR AROMATIC HYDI			1	T	T	T	T	T	
2-METHYLNAPHTHALENE	0.0357	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.047 U	0.144 U	0.0927 U	0.413
ACENAPHTHENE	0.0808	0.0261 U	0.0622 J	0.054 U	0.0533 U	0.0604 J	0.144 U	0.165 J	1.82
ACENAPHTHYLENE	0.0357	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.047 U	0.144 U	0.0927 U	0.0881 U
ANTHRACENE	0.165	0.0399 J	0.185	0.181	0.0533 U	0.047 U	0.144 U	0.0927 U	2.61
BENZO(A)ANTHRACENE	0.722	0.158	0.684	0.752	0.208	0.99	0.758	1.91	7.14
BENZO(A)PYRENE	0.922	0.17	0.576	0.625	0.218	1.16	1.2	2.62	7.8
BENZO(B)FLUORANTHENE	1.11	0.201	0.683	0.653	0.267	1.32	1.62	2.89	7.08
BENZO(G,H,I)PERYLENE	0.552	0.127	0.328	0.288	0.149	0.737	1.08	2.1	4.63
BENZO(K)FLUORANTHENE	1.02	0.196	0.707	0.645	0.252	1.35	1.18	2.94	8.56
CHRYSENE	1.06	0.254	0.902	0.734	0.292	1.68	1.18	2.81	8.81
DIBENZO(A,H)ANTHRACENE	0.123	0.038 J	0.158	0.0922 J	0.0533 U	0.207	0.144 U	0.689	1.91
FLUORANTHENE	2.38	0.475	1.96	1.86	0.564	3.46	2.16	6.8	21.9
FLUORENE	0.0858	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.0872 J	0.144 U	0.215	1.76
INDENO(1,2,3-CD)PYRENE	0.526	0.107	0.325	0.296	0.124	0.683	0.925	1.9	4.53
NAPHTHALENE	0.0357	0.0261 U	0.0485 U	0.054 U	0.0533 U	0.047 U	0.144 U	0.0927 U	1.6
PHENANTHRENE	1.19	0.197	1.04	0.528	0.23	1.67	0.813	3.38	17.8
PYRENE	1.84	0.386	1.49	1.4	0.448	2.83	1.77	5.3	17.2
TOTAL PAHS	11.8	2.35 J	9.1 J	8.05 J	2.75	16.2 J	12.7	33.7 J	116
PESTICIDES (MG/KG) 4.4'-DDD	0.0047	0.00000 1	0.0004	0.04.47	0.0254 J	0.0000 1	0.00079 J	0.00007 1	0.00096 J
-,		0.00608 J	0.0234 J	0.0147 J		0.0063 J		0.00087 J	
4,4'-DDE 4.4'-DDT	0.0034	0.00601 0.0008 J	0.026	0.0225 0.00915 J	0.0323	0.0142 0.00794 J	0.00221 J 0.00073 UJ	0.00036 J 0.00375 J	0.00037 J 0.00414 J
ALDRIN		0.0008 J 0.00029 J	0.00469 J 0.0005 U	0.00915 J 0.00051 J	0.00414 J 0.00069 J	0.00794 J 0.00046 U	0.00073 U	0.00375 J 0.00072 J	0.00414 J 0.00044 U
ALPHA-CHLORDANE		0.00029 J 0.00053 U	0.0005 U	0.00051 3	0.00069 J	0.00046 U	0.00073 U	0.00072 J	0.00044 U
ENDOSULFAN II		0.00053 U	0.0005 0	0.00137	0.00035 U	0.00046 U	0.00073 U	0.00047 0	0.00044 0
GAMMA-CHLORDANE		0.00037 J	0.00205 0.00065 U	0.00137 0.00079 U	0.00118 J	0.00103 J	0.00224 J	0.00243	0.0023 0.00301 J
TOTAL DDT POS	0.0090		0.0541 J	0.00079 U	0.0618 J	0.00037 U	0.00392 J	0.00203 0.00498 J	0.00547 J
PCBS (MG/KG)	0.0113	0.0129 3	0.0541 3	0.0404 J	0.0010 3	0.0204 J	0.003 3	0.00490 3	0.00347 3
AROCLOR-1016	0.0438	0.0133 U	0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0185 U	0.0118 U	0.011 U
AROCLOR-1010	0.0438		0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0185 U	0.0118 U	0.011 U
AROCLOR-1232	0.0438	0.0133 U	0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0185 U	0.0118 U	0.011 U
AROCLOR-1242	0.0438	0.0133 U	0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0185 U	0.0118 U	0.011 U
AROCLOR-1248	0.0438	0.0133 U	0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0185 U	0.0118 U	0.011 U
AROCLOR-1254	0.0438	0.0133 U	0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0185 U	0.0118 U	0.011 U
AROCLOR-1260	0.334	0.0133 U	0.0125 U	0.0139 U	0.0138 U	0.0117 U	0.0707 J	0.0118 U	0.011 U
METALS (MG/KG)	0.554	0.0100 0	0.0123 0	0.0133 0	0.0130 0	0.0117 0	0.0707 0	0.0110 0	0.025 0
ARSENIC	27	6.34	6.91	6.45	6.46	7.59	13.5	5.41	6.73
CADMIUM	1.44	0.808 U	0.725 U	0.805 U	0.0866 J	0.703 U	2.4 J	1.32 J	0.679 U
CHROMIUM	31.9	17.8	17.8	17.7	11	20.7	33.2	22.9	21.3
COPPER	509	26.6	36.8	31	27.4	40.6	390 J	251 J	94.3 J
LEAD	258	24	33.8	25.8	24.6	53.6	220	144	29.7
MERCURY	0.892	0.0654	0.169	0.632	0.203	0.061	0.366	0.96	0.193
ZINC	2960	91.8 J	144 J	104 J	96 J	146 J	1580 J	848	300 J
	2300	01.00	177 0	10-7-0	55.0	1700	1000 0	0-10	000 0

Notes:

Shaded cells indicate an exceedance of the maximum suspended sediment concentration (samples NTC17PCSD50 and NTC17PCSD51-52).

Abbreviations:

J - Estimated value
U - Nondetected result

TRIB - Tributary REF - Reference

NA - Not available/Not applicable

Sources:

Illinois EPA Tier 1 - Draft Illinois EPA Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments (Illinois EPA, 2009) Region 5 – USEPA Region 5 Ecological Screening Levels, Sediment (USEPA, 2003)

4.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

4.1 SUMMARY/CONCLUSIONS

The recent sampling event was conducted in March 2012 and consisted of collecting benthic invertebrates to assess benthic community health, surficial and suspended sediment samples for chemical analysis, and surficial sediment samples for toxicity testing. The investigation was conducted to determine: whether benthic invertebrates are adversely impacted from exposure to North Branch Pettibone Creek sediment; the current sediment quality in Pettibone Creek; and whether a continuing source of sediment contamination persists upstream of Navy property.

4.1.1 <u>Benthic Community Evaluation</u>

This section presents the evaluation of the benthic community including the benthic community survey, the sediment chemistry, and the toxicity testing.

4.1.1.1 Benthic Community Survey

Benthic invertebrates were collected to characterize the current benthic community present within Pettibone Creek. In addition to collecting the benthic samples, a physical habitat assessment was also conducted to help interpret the results.

The primary metric that was used to evaluate the health of the benthic invertebrate community in Pettibone Creek was the mIBI. The samples had mIBI scores indicating biologically degraded conditions, with assessment ratings of "Fair" and "Poor." However, samples were collected outside of the index period specified by Illinois EPA for the use of these rankings. If the samples had been collected during the index period, the scores may be higher because some insect taxa not identified in March would have grown and be identified in summer samples. Although an increase in insect taxa would probably have resulted in higher mIBI scores, the mIBI index is still useful for comparing scores between the reference samples and the site samples. In general, the Pettibone Creek reference mIBI scores were in the "Fair" assessment category and site index values were rated as "Poor"; however, there was some crossover. The test sites with scores in the "Fair" range were in the downstream portions of the channel (Figure 3-1). For other metrics, averages from reference sample sites were consistently higher than the average of test site sample scores.

Stream habitat conditions which were characterized using the QHEI, were relatively consistent among sites, with QHEI scores ranging from 52 to 66 at reference sample sites, and 49.5 to 61 at test sample sites. Most of the reference sites had QHEI scores in the "Good" range, as did many of the test sites;

most of the test sites which were classified in the "Good" range were located in the downstream portions of the North Branch. The biological index and the QHEI were highly correlated, with the regression coefficient ($r^2 = 0.48$) suggesting that 48% of the variability in the biological index can be attributed to the QHEI and 52% of the variability is due to other factors.

4.1.1.2 Surficial Sediment

Surficial sediment samples from 0 to 4 cm were collected from Pettibone Creek for chemical analysis. Maximum concentrations of metals and PCBs were generally detected in an upstream sample located near former manufacturing facilities. Maximum concentrations of PAHs were detected in upstream sample located immediately downstream of a storm sewer collecting water/runoff from a large section of the City of North Chicago. These results suggest that upstream sources are currently contributing to the chemical concentrations detected downstream in Pettibone Creek.

The concentrations of the detected chemicals were compared to various sediment criteria to determine whether the concentrations exceeded the criteria and have the potential to impact benthic invertebrates. Based on these comparisons, copper, lead, zinc, and PAHs have the greatest probability of impacting sediment invertebrates. Individual PAHs exceeded screening levels in several samples, and concentrations of total PAHs exceeded the screening level in most samples. Five samples (two upstream and three site samples) had total PAH concentrations exceeding the alternative sediment cleanup objective of 23 mg/kg. Several metals were detected at concentrations that exceeded their screening criteria, but most of the concentrations were less than the PEC, with the exception of two upstream locations, and one site sample (from location NTC17PCSD55). The sample from NTC17PCSD55 had the greatest concentrations of several metals (copper, lead, and zinc) in any of the site samples. Although the benthic community survey and toxicity testing results from this reach would be valuable to consider, the reach is only 100 feet long, representing a small portion of Pettibone Creek.

Although concentrations of PCBs and pesticides exceeded their respective screening levels in several samples, concentrations were much lower than their respective PECs. Also, concentrations of several pesticides were relatively low and are indicative of typical spraying activities. Therefore, impacts to benthic invertebrates from PCBs and pesticides are not likely.

Chemical concentrations in the site samples were generally greater than concentrations in reference samples. However, chemicals concentrations from the North Branch tributary (NTC17PCSD57 and NTC17PCSD58), NTC17PCSD59, NTC17PCSD62, and NTC17PCSD63 were similar to reference samples concentrations for total PAHs. Chemical concentrations from the North Branch tributary (NTC17PCSD57 and NTC17PCSD58), NTC17PCSD54, NTC17PCSD59, NTC17PCSD61, and

NTC17PCSD62 were generally similar to reference samples concentrations for the primary metals of concern (copper, lead, and zinc).

Current sediment concentrations are generally lower compared to historical sediment samples collected in 2001, with the exception of PAHs. Concentrations of PAHs and metals have increased slightly in some reference samples and at locations downstream of the confluence of North and South Branches of Pettibone Creek.

4.1.1.3 Toxicity Testing

10-day sediment toxicity testing using *H. azteca* was performed to help assess risks to sediment invertebrates, and to develop cleanup goals (if needed). The tests were conducted on one laboratory control sample, two reference samples (South Branch of Pettibone Creek), and six site samples. The toxicity testing indicated acceptable survival for the site and reference samples. Mean growth in some of the site samples was significantly lower than the mean growth in one reference sample (NTC17PCSD66). However, this reference sample had much greater growth compared to the other reference sample (NTC17PCSD68). Tables C-2 and C-3 in Appendix E show which samples had lower growth compared to the growth in sample NTC17PCSD66. None of the site samples had significantly lower mean growth compared to the mean growth in the reference sample from NTC17PCSD68. Therefore, growth is not considered impacted in site samples.

4.1.1.4 Overall Benthic Invertebrate Community Evaluation

Three lines of evidence were used to determine whether the benthic community was being impacted in Pettibone Creek and, if so, whether the impacts were related to the chemicals in the sediment. Table 3-6 presents the results of these three lines of evidence. The first line of evidence, the benthic community survey, found that the benthic community in Pettibone Creek ranged from poor to fair, although in general, the benthic communities in the reference reaches were better than those in the site reaches. There was a strong correlation between the benthic community health and the habitat conditions. The next line of evidence was sediment chemistry. Several chemicals were detected at concentrations that exceeded their respective screening levels. Among these chemicals, copper, lead, zinc, and total PAHs have the highest probability of impacting sediment invertebrates. In general, concentrations of contaminants (primarily PAHs and metals such as copper, lead, and zinc) are generally higher in the North Branch of Pettibone Creek (site reaches) compared to the South Branch (reference reaches). However, there does not appear to be a correlation between chemical concentrations in the sediment and any of the benthic macroinvertebrate metrics, which indicates that sediment chemistry may not be the reason for the "poor" to "fair" benthic community health ratings. Finally, the last line of evidence, toxicity testing, found that none of the site samples were considered impacted regarding the survival or growth of *H. azteca*. Based on the results of these three lines of evidence, the possibility that chemicals in the sediment are at least partially impacting the benthic community in Pettibone Creek cannot be ruled out. However, the lack of toxicity observed in the toxicity test supports the likelihood that the poor to fair benthic community in the creek is related to the habitat, along with the timing of the sampling which was outside the Illinois EPA mIBI index period. This is further supported by the plots that were prepared to evaluate the relationship between chemical concentrations and benthic community of the toxicity test results. No strong relationships were found on the plots.

4.1.2 <u>Upstream Continuing Sediment Contamination Source</u>

To determine whether there is a continuing upstream source of contamination to Pettibone Creek, surficial sediment samples were collected from three locations in Pettibone Creek upstream of where the creek enters NSGL, and two suspended sediment samples were collected from sediment traps at the point where Pettibone Creek enters the NSGL property boundary.

4.1.2.1 Upstream Surficial Sediment Samples

Three surficial sediment samples (NTC17PCSD70, NTC17PCSD71, and NTC17PCSD72) were collected in Pettibone Creek, upstream of NSGL property (see Figure 3-2). With the exception of a few pesticides, all of the maximum detected concentrations were in the upstream sediment samples.

Maximum concentrations of metals and PCBs were generally detected in the farthest upstream sampling location (NTC17PCSD70). Although the elevated metal concentrations are likely reflective of the manufacturing facilities that existed in this area, it is not known whether the concentrations in the sediment represent historical discharges, or whether there are current sources of metals that are still discharging to Pettibone Creek. It is possible that the upstream sediment is a continuing source of contamination to the downstream portion of Pettibone Creek; however, the current source of metals contamination to the creek has likely decreased.

Maximum concentrations of PAHs were detected in the sampling location NTC17PCSD72, which is located immediately downstream of a storm sewer collecting water/runoff from a large section of the City of North Chicago. It is likely that upstream sources are continuing to contribute to the elevated PAHs concentrations detected in Pettibone Creek downstream of where the creek enters the NSGL property.

Based on the low concentrations of the pesticides, and the relatively consistent results within Pettibone Creek, it is difficult to determine the source of the pesticides. Potential sources include runoff from areas where pesticides were applies to the ground, which then entered the stormwater system and discharged to Pettibone Creek through the outfalls.

4.1.2.2 Suspended Sediment Samples

Suspended sediment was collected in sediment traps placed in the culverts that discharge the North Branch of Pettibone Creek onto NSGL. The suspended sediment was used to determine the chemical concentrations in sediment flowing onto Navy property over time.

The sample (NTC17PCSD51-52) collected from culverts that carry Pettibone Creek under the highway interchange and receive stormwater drainage from the former manufacturing facilities area and northern part of NSGL had higher metals concentrations compared to all site and reference samples. PAH, pesticide, and PCB data were only available from sample NTC17PCSD50. Several PAH and pesticide concentrations were lower in the suspended sediment sample compared to several upstream NTC17PCSD72), (NTC17PCSD70 through site (NTC17PCSD53 through NTC17PCSD60, NTC17PCSD61, and NTC17PCSD64), and reference (NTC17PCSD69) locations. PCB data was higher in the suspended sediment sample compared to all locations. concentrations detected in the suspended sediment samples may be biased high due to the smaller grain size collected by sediment traps compared to the grab sediment samples. However, the elevated metal concentrations in sample NTC17PCSD51-52 are likely reflective of the former manufacturing facilities that existed upstream of Navy property. The suspended sediment results suggest that upstream sources are continuing to contribute to the chemical concentrations detected in Pettibone Creek downstream of where the creek enters the NSGL property.

4.1.2.3 Overall Conclusions - Upstream Continuing Sediment Contamination Source

Based on elevated chemical concentrations, particularly metals and PAH concentrations, in upstream sediment samples and suspended sediment samples, upstream sources are continuing to contribute to the chemical concentrations detected in Pettibone Creek downstream of where the creek enters the NSGL property.

4.2 RECOMMENDATIONS

Based on the results of this investigation, no actions are recommended for Pettibone Creek because a combination of available habitat, physical stressors related to stream velocities, and sediment chemistry may contribute to the poor benthic communities observed in some of the North Branch samples. However, removal of contaminated sediment would not likely result in a significant benthic community in Pettibone Creek for reasons discussed below because there appears to still be current sources of contamination to Pettibone Creek. This recommendation only applies to the portion of Site 17 evaluated

in this investigation which is the North Branch of Pettibone Creek that lies within the NSGL property boundary, exclusive of the Boat Basin.

While restoration activity in the North Branch of Pettibone Creek could include removal of contaminated sediment and replacement with clean substrate, removal of contaminated sediment alone is not likely to have a great effect towards restoring biological integrity. That is because it is evident that physical habitat conditions are at least partially limiting biological potential. However, one relatively simple step that could be taken to improve habitat conditions and channel morphology would be to refrain from removing woody debris that falls into the stream channel and along the banks. The woody debris also increases habitat complexity and provides stable, inhabitable substrate for specialized macroinvertebrates, including serving as a nutritional source for some. Additionally, the repair or re-routing of the stormwater outfalls that empty into the creek on base would help improve habitat in the creek. In any case, the physical, chemical, biological, and political goals for restoration should be carefully coordinated and measures to gage eventual project success should be established as restoration activities are planned (Palmer et al., 2005; Palmer, 2008).

REFERENCES

Gray, L. 2004. Changes in water quality and macroinvertebrate communities resulting from urban stormflows in the Provo River, Utah, U.S.A. *Hydrobiologia* 518(1): 33-46.

Halliburton NUS, Inc.,1993. Site Inspection Report for Pettibone Creek, Boat Basin and Harbor Areas Naval Training Center Great Lakes, Illinois. June.

Illinois EPA, 1995. CERCLA Expanded Site Inspection Report. December.

Illinois EPA, 2000. Baseline Sediment Cleanup Objectives from the Draft Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments. September.

Illinois EPA, 2011. Standard Operating Procedure for Method to Collect Aquatic Macroinvertebrates from Wadeable Streams for Biotic Integrity Assessments Document Control Number (DCN) 168 (DRAFT).

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger, 2000. "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems." Archives of Environmental Contamination and Toxicology, Vol. 39, pp. 20-31.

Merritt, R.W., K.W. Cummins, and M.B. Berg. 2008. *An Introduction to the Aquatic Insects of North America*. 4th edition. Kendall Hunt, Dubuque, Iowa.

Palmer, M. A., E. S. Bernhardt, et al. 2005. Standards for ecologically successful river restoration. *Journal of Applied Ecology* 42(2): 208-217.

Palmer, M.A. 2008. Reforming watershed restoration: Science in need of application and applications in need of science. *Estuaries and Coasts* 32:1–17

Rogers, Golden, & Halpern and BCM Eastern Inc., 1986. <u>Initial Assessment Study, Naval Complex Great Lakes, Illinois.</u> March.

Tetra Tech NUS, Inc., 2003a. Remedial Investigation and Risk Assessment Report - Site 17 – Pettibone Creek and Boat Basin, Naval Training Center Great Lakes, Great Lakes Illinois. September.

Tetra Tech NUS, Inc., 2003b. Watershed Contaminated Source Document - Site 17 – Pettibone Creek and Boat Basin, <u>Naval Training Center Great Lakes, Great Lakes Illinois</u>. September.

Tetra Tech NUS, Inc., 2005. Feasibility Study for Site 17 – Pettibone Creek and Boat Basin, Naval Training Center Great Lakes, Great Lakes, Illinois. August.

Tetra Tech NUS, Inc., 2011. Draft Final Remedial Action Plan for Site 17 – Pettibone Creek, Naval Station Great Lakes, Great Lakes, Illinois. March.

Tetra Tech. 2007. Illinois Benthic Macroinvertebrate Collection Method Comparison and Stream Condition Index Revision. Prepared for Illinois Environmental Protection Agency. Prepared by Tetra Tech, Owings Mills, MD.

Tetra Tech, 2012. Tier II Sampling and Analysis Plan, Sediment Characterization Investigation in Support of the Feasibility Study for Site 17 – Pettibone Creek, Naval Station Great Lakes, Great Lakes, Illinois. March.

U.S. Navy, 2010. <u>Implementation of an Integrated Natural Resources Management Plan at Naval Training Center, Great Lakes, Illinois</u>. Naval Facilities Engineering Command. Southern Division. November.

USEPA (U.S. Environmental Protection Agency), 2003. <u>Ecological Screening Levels</u>. USEPA Region 5 (http://www.epa.gov/reg5rcra/ca/edgl.htm). August.

APPENDIX A
SUPPORTING DOCUMENTS FOR FIELD ACTIVITIES AND SITE PHOTOGRAPHS
SUPPORTING DOCUMENTS FOR FIELD ACTIVITIES AND SITE PHOTOGRAPHS
SUPPORTING DOCUMENTS FOR FIELD ACTIVITIES AND SITE PHOTOGRAPHS
SUPPORTING DOCUMENTS FOR FIELD ACTIVITIES AND SITE PHOTOGRAPHS

03121

Project Manager or Client Contact: SAM STRIBLENG TE 480 Rep GAVE BEND DUT CAN Address/Phone: OW 2/63 MILLS MP ZULT 410 - 296-9413 Contact Name/Phone: Topp AREGARD Project Number: Project Name: 112 Go 10 2 \					Ту	Type of Analyses Requested								
					19(3):18%									
Date	Time	Sample Identification/Station	Preservative (Y/N)	Numb	20.0									
0 2/28	0930	NITCITIFE SOLI - PETT STANK CREEK	Y	2	1									
	JE.	NTC 17865060 - 11	Y	3	1									
03/28	1315	NT2 178630 57- 11	7	2	1									
13/18	1430	NTG 17863 54 7 11	Y	3	V									
03/28	1600	NT617620 53 - 11	1	2	V									
3/29	2818	NTC1766058 - U.T. TO PETTYBONG CREEK	Y	3	V									
77/27	1750 -	WICHTESD 64 OF TO STANDER TETTERONE CE	11-	3										
			1_						1					
Sampled by Date/Time: Relinquished by: (signature) (Signature)					Da O k	Date/Time: 0		Received by (signature)			W	Mego		Date/Time:
Received by: (signature)		Date/Time: Received by: (signature)		Date/Time:			Received by: (signature)					Date/Time:		

FORM DISTRIBUTION:

White - Tt BRF

Yellow - Report

Pink - Sampler

Tetra Tech, Inc. | Biological Research Facility

CHAIN-OF-CUSTODY RECORD

FORM DISTRIBUTION:

White - Tt BRF

Yellow - Report

Pink - Sampler

Tetra Tech, Inc. | Biological Research Facility

Projec	ct Mana	ger or Cl	ACREANS. TE BASAK BLUE. SUTTE 200			Туг	oe o	f An	alyse	es R	eques	sted	market and State of the Control of the Control	Marketine Transport of	ាទីព្រំ ១ ស៊ីរម្រ		
Addre	ess/Pho	ne:		06 5063 4.0-75	6ANK BUG. SUTH 200 ALTHO 6-8913										inte Etri	elte elotel	
Conta	ct Nam	e/Phone:		TODO AL	u Gaard		STS.					Ì	ŀ		//Nenvo		
Projec	t Numb	er: 112	G 01021	roject Name:	NAVFACS	(X/N)	Containers								: (C)A(E) : (A)(E) : (A)(E)(E)		
Pag	ge d	of	Sample Lo	cation:	CAEAT CARES	Preservative (Y/N)	of	シドガス								aja Îva potent	
Date	Time		Sam	ple Identificat	ion/Station	Prese	Number	BEA							retofficiálió Victoriolog	ja d j	ige (Slejanicki);
0427	1900	NTC	1786 00	63		1	1,1	-				_					
0/127	1450	प्य≮	78650	64		7	7	~								,	
03/27	1630	NTCI	7845062	<u> </u>		Y	3	✓				\perp					
						<u> </u>						_					
						ļ						_		1			
						<u> </u>						_					
										\dashv		\perp	_				
						<u> </u>					\perp						
												_	_				
						ļ				_		_					
					, ,	L	لـــا									.1	
Sample (signatu	ed by() ure)(Date/Time: 03-76-20(2	Relinquished by: (signature)	いへ	1	Da 03	ite/Ti Դo∵-	me: 9390 912) R (5	eceiv signa	red by ture) C	مام	M.	2	Date/Time: 31 Mar 12 1700
	Received by: Signature) Date/Time: Received by: (signature)						Da	ite/Ti	me:		eceiv signa	red by	:	·	· .	Date/Time:	

TETRA TECH NUS, INC.	CHAIN	OF CUST	ODY		NU	IMBER	IA O	02	17871	}	İ		PAGE	OF	<u> </u>
PROJECT NO. FACILITY: 5 AT \$	HOS BY		115		41	ONE NU	21	725	L	ABORA	PIVI	NAME A	ND CO	NTACT:	7772 D
SAMPLERS (SIGNATURE)		LD OPERA			PH	ONE N	JMBER			DDRES	S		, -		
コピオンルへ		E (77/			441	239	<u>.) 2</u>	264	-	ITY, ST	- A T.F				
		RRIER/WA			1-11	50	. n			-				1	
		Chex	<u>_</u>	/ ()	717	CONT	AINER	TYPE		NAS			TI	·	
							TIC (P)		SS (G)		3/	<u>G/6</u>	_		-/-/
STANDARD TAT ☐ RUSH TAT ☐ ☐ 24 hr. ☐ 48 hr. ☐ 72 hr. ☐ 7 day	<u>х</u>	r s	SD, QC,			USED					W/				
CHARACTERIZATION -	Ú	ВОТТОМ DEPTH (FF)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAB (G)	No. OF CONTAINERS	THE	OF AVALY	35		10 ¹	<u>;</u>				
VEATE STATE OF THE SAMPLE ID	TOP DEPTH (PT)	ВОТТОМ	MATRIX (6 ETC.)	COLLECT GRAB (G) COMP (C)	No. OF CC	44								CON	MANENTS
为 1010 NTC 17 PCSD 55 5	5 0	4	50	6	2	1	1								
1 1000 NTC 17 PC SD 56 5	6 1	-	1		7	1	(- Company (C.)							
1 1038 NTC 17PC SD 57 S	7				2	1								ļ	
1 1315 NTC17 PCSD 63 6	3				2	,					. =				
1 1510 NTC 17 PC SD 64 64	4	and a second			2	Mark see	(- Calendary							
1 1645 NTC 17 PCSD 62 63	2				2	1	1							 0 (-	
150030 NTC 17PC SD 61 6					6	3	~~~	3						KUN M	5/2/50
1 1000 NTC 17 PCSD 60 6	0				2	1	9		_						
1 500 FD 032812-01 114		and the second second	1		2	1	1							MTC17	PCSD 61
1310 NTC 17 PC SD 70 7	0]				<u> </u>	1	ĺ								
1 1325 NTC17 PCSD 71 7	1				2	· ·	(
1 1345 NTC 17 PCSD 72 7	2.				2_	1	į								
V 140 NTC 17 PCSD 59 5	9 1		y	V	2_	1	- Allin area							214	
1. RELINQUISHED BY	DA	TE,	Ţ	IME	1. RI	ECEIVE	D BY F	CDC	\times				DA	TE, 30.12	TIME
2. RELINQUISHED BY	DA			IME	2. RI	ECEIVE	D BY			-			DA		TIME
3. RELINQUISHED BY	DA	TE	1	IME	3. RI	ECEIVE	D BY					·	DA	TE	TIME
COMMENTS	1														

DISTRIBUTION:

WHITE (ACCOMPANIES SAMPLE)

YELLOW (FIELD COPY)

PINK (FILE COPY)

4/02R FORM NO. TtNUS-001

Tt	ROJECT NO: FACILITY:								NUMBER № 027879				-	PAGE 2 OF 2					
1120	FOIC	FACILITY:	IT LAKE	:_	PROJE	CT MA	NAGER	LEADER	2		JMBER			EU	APIR	NAME A	AND CO	NTACT:	HVLD_
SAMPLI	ERS (SIC ;	GNATURE)					ATIONS SIMI		PF		JMBER			ADDRE	SS				
7	7	5 Si			CARRI	ER/WA	YBILL N	NUMBER	•					CITY, S					
					FC	DUZ	<u>(27</u>	764	4/11	25	120			NA:	SHULL		TN		, , , , , , , , , , , , , , , , , , ,
										PLAS	TAINER TIC (P)	TYPE or GLAS	SS (G)		3/1		८/		
RUSH T	ARD TA	T □ 48 hr. □ 72 hr. □ 7 da	y 🔀 14 da	зу		Z J	SD, QC,			PRES	ERVAT	IVE		/· U	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>			
710		SCOIMCHT CHARACTERIZAT SITE 17		TH (FF) C ?A	ВОТТОМ DЕРТН (ЕТ)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	No. OF CONTAINERS	ىد	OF WALK	GS /		~ ~ 0 /) <u>;;</u> /					
	TIME	PETTIBURG CREEK SAMPLEID	LOCATION ID		тор бертн (кт)	воттом	MATRIX (ETC.)	COLLECT GRAB (G) COMP (C)	No. OF C	44	9				//			con	MENTS
331	505	NTC/7PCSD 4	54 5	4	0	4	50	C	2_	1	1								· · · · · · · · · · · · · · · · · · ·
	نصن	FD032812-0	12 00	1P	1			of value	2	1								NTC171	PCS0 53
1	(3)	NTC 17PCSD 4	73 5	3					1	1		1							
3/29 0	230	NTC 17/CSD		9					2	į		1							
	1137	134		5		Ì			ぇ	1	-	(ļ <u> </u>				
	1210	NTC 17PC SD	66 6	6					2	i	(******							
	140	NTC 17 PC SD	69 6	9					7		1								
_		NTC 17 PCSD	· 1	7					~			1							
		NTC17PCSD		8	- 6	V	4		2	1	1	_							
	-																		
	-																		
1. RELINQUISHED BY					DATE TIME		TIME 1000	1. R	ECEIVE	D BY	FCC	EX				DA:	150 /2	TIME Aug	
2. RELINQUISHED BY							2. RECEIVED BY				7			DA		TIME			
3. RELINQUISHED BY				DATE TIME 3.1			3. R	ECEIVE	D BY						DA	TE	TIME		
COMMENTS																		-	·I ·

PINK (FILE COPY)

TŁ.	TETRA TECH NUS, INC.
-----	----------------------

CHAIN OF CUSTODY

NUMBER N = 027880 PAGE 3 OF 3

PROJ	ECT NO:	FACILITY: NS GRAT	LAKES	PROJE BOI FIELD	CT MA	NAGER	<u>S</u>	PH 4	IONE NU	JMBER JMBER	フンく		LABORATORY NAME AND CONTACT: (MPINCAL D RICHARU) ADDRESS						
	1/-1	51					APSON NUMBER		23	\$2	1764	-							
	K.			CARRI	ER/WA	ÝBILL N	NUMBER	411/	747) ()		C	ITY, ST		Mil	. 7	\prec		
				1 00	<i>JU j</i>	T	,	• 11	CONT	AINER TIC (P)		S (C)			<u></u>	$\vec{\zeta}$	•		
RUSH	DARD TAT	「		-		3D, QC,	,			ERVATI			/ V/) \ /\	12 m				
DATE 20/2	TIME	SAMPLE ID	LOCATION ID	ТОР DЕРТН (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	No. OF CONTAINERS	THE	OF HUMLY	35						COMMENTS PLASTIC TRUCE IL		
3/30	7/7/10		RB			QC		5	2	2							PLASTIC	MIEN	
,,,,																			
						ļ <u>.</u>													
		·																	
							<u> </u>												
							·	-	<u> </u>						ļ				
				ļ			-												
								1.4 =	505" (5	D. D.Y		i 						TIME	
	LINQUISH		DATE	<u> 30-1</u>	$2 \mid]$	TIME 1000		ECEIVE	`F	FDE	<u></u>					TE . 30 /2	11006		
1	2. RELINQUISHED BY						TIME		ECEIVE							DA		TIME	
	3. RELINQUISHED BY					DATE TIME										DA	.IE 	TIME	
COMMENTS RUPE BALAND DE CO					140	۲6°	1	6 %	F 1	(66	201	3_	·····					······································	
DIST	RIBUTION:		SAMPLE)			YELLO	W (FIELD	COPY	')			PIN	K (FILE	COPY)			4/02R	

CHAIN OF CUSTODY NUMBER 027887 PAGE ___OF ___

PROJECT NO: FACILITY: //2602/20 OKEAT LAKES - SME! SAMPLERS (SIGNATURE)			SITE 17	TEIT BOB DAVIS					HONE N				LABORATORY NAME AND CONTACT: EMPIRICAL LAB - BRIAN RICHARD						
			1		FIELD	OPERA	TIONS		Pi	HONE N	UMBER			ADDRE	SS				
							neng		1	24-7	77 -0	035		277	FREI	16 h 1	LAND	17 0	rive STESS.
					CARRI	ER/WA	YBILL	NUMBER		116 1	10 26)	'	CITY, S		سد د د	7.1	,	37228
							1	8 //	0 /	1/9 4	AINER			/	POHUL	LLE	TN	,	3/268
												or GLA	SS (G)	\angle		_/_			///
RUSH	DARD TA TAT [] hr. []		thr. ☐ 7 day ☐ ′	14 dav			,D, QC,			PRES USED	ERVAT	IVE		//	//	//	//	//	
24 hr. 48 hr. 72 hr. 7 day 14 day 15 day 15 day 16 day 16 day 16 day 17 day 17 day 18						ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	No. OF CONTAINERS	710	OF HAND	(35)							COMMENTS
6/14		NTCITPE					50		1	<u> </u>			ĺ	Ĺ	Í	ĺ			
										-	-	 		-					
1/14	1515	NTCITI	05051-52				50	<u> </u>	2	2		-						<u> </u>	
								-			-			-			ļ		
									. <u></u>				<u></u>						· · · · · · · · · · · · · · · · · · ·
																			_
						·													
				-			<u> </u>	+				1				 	 		
				ļ	-		-					-			<u> </u>	<u> </u>	 	 	
		_						ļ				ļ		<u> </u>	ļ	ļ		<u> </u>	
									-										
							<u> </u>	1		-	 			 			-		
		<u> </u>		-	<u>.</u>					 			<u> </u>	-	 		<u> </u>	 	
														ļ	<u> </u>		ļ <u> </u>		
1. RELINQUISHED BY Mark Margel					DATE	4-12	Ī -	ГІМЕ 1900	1. F	RECEIVE	DBY	FED.	FΧ				DA	TE	TIME
2. RELINQUISHED BY					DATE			TIME	2. F	RECEIVE				<u></u>		<u></u>	DA	TE	TIME
3. RELINQUISHED BY					DATE TIME				3. F	3. RECEIVED BY							DA	ATÉ.	TIME
COMMENTS										-									
DISTR	IBUTION	: WHIT	TE (ACCOMPANIES SA			YELLO	W (FIELD	COPY	<u>()</u>			PIN	NK (FILE	COPY)			4/02F	

Page__ of _ l NTC17PCSD 53 Sample ID No.: Project Site Name: Naval Station Great Lakes Sample Location: NTC17PCSD S Project No.: 112G01021 Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil [X] Sediment Type of Sample: [X] Low Concentration [] Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Color Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Depth Description (Sand, Silt, Clay, Moisture, etc.) Color 3,28,12 538 0-4 cm BRH/ GRAY MURE BRN SAND Method: PCASTIC TTZ C TO MED SAND marie Monitor Readings (Range in ppm): 1546 SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected Other PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C 4 oz w/m glass, 4° C Metals & TOC 2x vol QA OBSERVATIONS / NOTES: MAP: SEE FIG 7-1 SAMPLED @ 1550 Circle if Applicable: Signature(s): Duplicate ID No.: MS/MSD FD 032812-02

Page<u>(</u> of <u></u>

Project Site Nam Project No.: [] Surface So [] Subsurface [X] Sediment [] Other: [] QA Sample	ill e Soil Type:	aval Station Great Lak 112G01021	es	Sampled C.O.C. No Type of S [X] Low	ocation: NTC17PCS By: K. Simpso	SD 54
Date:		Depth	Color	Description	n (Sand, Silt, Clay, Mo	isture, etc.)
Time:						
Method:						
Monitor Reading (ppm						
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth	Color	Description	ո (Sand, Silt, Clay, Mo	isture, etc.)
3.28.12	1456	0-4 cM	BRN TO	WET-	- SILT	
Method: PLASTC	1	1	SLAY		TR F SAN	ıΔ
moute			1		TR ROUTS	
Monitor Readings					1	
				+		
(Range in ppm):		_ 		 		
		- 		+		
			<u> </u>			
	Ψ					
	1503	<u> </u>			V	
SAMPLE COLLECTION	ON INFORMAT	TION:				
	Analysis		Container Req	uirements	Collected	Other
PAH (LL), PCBs & Pe	sticides		4 oz w/m gl	ass, 4° C		
Metals & TOC			4 oz w/m gla	ass, 4° C		
OBSERVATIONS / NO				MAP:		
60.41	DIED A	2 1505		5015	F19 7-1	
<i>> f</i> wii				1	1, / / /	
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate IC) No •		-		
1410/14100	- Dapirodio it			<i></i>	151	
				1 14		

Page___ of __ Sample ID No.: NTC17PCSD 55 Project Site Name: Naval Station Great Lakes Sample Location: NTC17PCSD Project No.: 112G01021 Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil Type of Sample: [X] Sediment [X] Low Concentration [] Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Color Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Time Depth Color 3.27.12 SIT & E SAND 0-4 CM 000 BRH Method: PLASTIC NUMBEL Monitor Readings (Range in ppm): 1009 SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected Other PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C 4 oz w/m glass, 4° C Metals & TOC OBSERVATIONS / NOTES: MAP: 5 AMPLE @ 1010 フー SEE FIG. Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page___of |

NTC17PCSD 56 Sample ID No.: Project Site Name: Naval Station Great Lakes Sample Location: NTC17PCSD Project No.: 112G01021 Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil Type of Sample: [X] Sediment [X] Low Concentration [] Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Color Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Time Depth Color 3.27.12 0-4 CM BRN SAND 012 Method: PLASTIC TOWER Monitor Readings (Range in ppm): 1018 SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected Other PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C Metals & TOC 4 oz w/m glass, 4° C OBSERVATIONS / NOTES: MAP: SEE F19 7-1 SAMPLED @ 1020 Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

					Page	eof
Project Site Nam Project No.: [] Surface So [] Subsurface [X] Sediment [] Other: [] QA Sample	oil e Soil	Naval Station Great Lake	es		cation: NTC17PCS By: K. Simpson	SD 57
GRAB SAMPLE DATA	A:					
Date:		Depth	Color	Description ((Sand, Silt, Clay, Mo	isture, etc.)
Time:						mater #
Method:	. Y.	-				
Monitor Reading (ppm COMPOSITE SAMPL						
		Ponth	Color	Provintion (10 Sit Clay Ma	!-tura ata\
Date: 3 . 27 . 12	10 30	Depth 0 - 4 CM	Color	Description ((Sand, Silt, Clay, Mo	
	עכייון	0-4 CH	BRN			F F SAND
Method: PCASTIC			 	177	C TO M	iel) strul
THOWEL			 			
Monitor Readings				<u> </u>		
(Range in ppm):						
	1036		<i>J</i>	 	<u>\h</u>	
	1000					
	 		-	+		· · · · -
SAMPLE COLLECTION	ONUMEORMA					
SAMPLE COLLEGIA	Analysis	(IION)	Container Requ	··iromonte	Collected	Other
PAH (LL), PCBs & Pe			4 oz w/m gla		Conjectica	Other
Metals & TOC	31101000		4 oz w/m gla		·/	
11101010101011			<u></u>			
OBSERVATIONS / NO				MAP:		
SAMPLET	00	1038		SEE FI	19 7-1	,
, , , , , , , , , , , , , , , , , , ,				'		
				j		
				l		
Circle if Applicable:				Signature(s):	,	
MS/MSD	Duplicate I	ID No.:		11-1	' 5 /	
·				17/7	11-	

					Page	of
Project Site Nam Project No.: [] Surface Soi [] Subsurface [X] Sediment [] Other: [] QA Sample	il e Soil	aval Station Great Lake 112G01021	9S		cation: NTC17PCSE by: K. Simpson	58
GRAB SAMPLE DATA	E					
Date:		Depth	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
Time:						
Method:						į
Monitor Reading (ppm)						
	r I					
Date:	Time	Depth	Color		(Sand, Silt, Clay, Mois	sture, etc.)
3 29.12	0814	0 4 cm	BRN/OLAY	WET-	SILT	
Method: PLASガム		i	,	TI	F SANI)	
Mouse				<u> </u>	R RUTS	
Monitor Readings					<u> </u>	
(Range in ppm):						
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1			
			1		1	
					 	
	 					
	(2(2)				 	
	0871	<u> </u>	<u> </u>		<u> </u>	
	<u> </u>		·			
				<u> </u>		
SAMPLE COLLECTIO	INFORMAT	FION:				
	Analysis		Container Requ		Collected	Other
PAH (LL), PCBs & Pes	777		4 oz w/m gla			<u> </u>
Metals & TOC , P	<i>1</i>		4 oz w/m gla	ss, 4° C		
						
					<u> </u>	
OBSERVATIONS / NO	ATEC:			MAP:		
		AO.3 ()				
SAMP	'LED @	0930		SEE	P19 7-1	
					• • •	
				ļ		
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate ID) No	<u> </u>		'	
1113/11135				1/-/	$\int \Lambda$	

Page_(of <u>\</u>

NTC17PCSD Sample ID No.: Project Site Name: Naval Station Great Lakes Sample Location: NTC17PCSD 112G01021 Project No.: Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil [X] Sediment Type of Sample: [X] Low Concentration [] Other: QA Sample Type: [] High Concentration GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Color Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Depth Color Time 3.28.12 BRN TO WET - SIT 1400 0-4 cm Method: PCASTIC TO CA CT GRAY TRUCE TR F. GRAVEL Monitor Readings (Range in ppm): 1406 SAMPLE COLLECTION INFORMATION: Other Analysis **Container Requirements** Collected PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C 4 oz w/m glass, 4° C Metals & TOC OBSERVATIONS / NOTES: MAP: SAMPLED @ 1410 SEE FIG 7-1 Signature(s): Circle if Applicable: MS/MSD **Duplicate ID No.:**

Page <u>1</u> of <u>1</u>

Project Site Nam Project No.: [] Surface So [] Subsurface [X] Sediment [] Other: [] QA Sample GRAB SAMPLE DATA	il e Soil Type:	aval Station Great Lak 112G01021	es	Sample ID No.: NTC17PCSD (O N						
Date:		Depth	Color	Description	(Sand, Silt, Clay, Mo	sture, etc.)				
Time:										
Method					-					
Monitor Reading (ppm):	·								
COMPOSITE SAMPL	E DATA:									
Date:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mo	sture, etc.)				
3.28.12	0950	0-4 cm	BRN/ MAY	WET	- FINE					
Method: PASTIC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- (· · · · · · · · · · · · · · · · · · ·		SILT	.,,				
Thouse	 		 	tn	CR TO	MED				
	 		 	1,0		1760				
Monitor Readings					SAND					
(Range in ppm):			<u> </u>							
				<u></u>						
	1			70.0						
	0958									
	120	—	- · · · · · · · · · · · · · · · · · · ·							
		<u>an et an </u>				jagarjajajajajajajajatetatatatatat				
SAMPLE COLLECTION		TION:								
· · · · · · · · · · · · · · · · · · ·	Analysis		Container Requ		Collected	Other				
PAH (LL), PCBs & Pe	sticides		4 oz w/m gla			 				
Metals & TOC			4 oz w/m gla	ss, 4° C	<u> </u>	 				
	 -				·	 				
		 				 				
OBSERVATIONS / NO	TES.			MAP:						
ODSERVATIONS FINE	V 1 H-V									
	P1 ED	C 1000			F19 7-1					
Circle if Applicable:				Signature(s):						
MS/MSD	Duplicate II	D No.:		スナ	5h	i				

Page [of [

NTC17PCSD 🍪 Project Site Name: Sample ID No.: Naval Station Great Lakes Sample Location: NTC17PCSD Project No.: 112G01021 Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil [X] Sediment Type of Sample: [X] Low Concentration [] Other: [] High Concentration QA Sample Type: GRAB SAMPLE DATA: Color Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: 3 . 18 . 12 Description (Sand, Silt, Clay, Moisture, etc.) Time Depth Color - SILT SOME 0-4 CM Method: PLASTIC SAND M-CR Thouse SAND TR Monitor Readings (Range in ppm): 0822 SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected Other / PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C Metals & TOC , PH 4 oz w/m glass, 4° C 4X VOC OBSERVATIONS / NOTES: MAP: samples @ 0830 SEE AG 7-1 Circle if Applicable: Signature(s): ソモラ MS/MSD **Duplicate ID No.:** たけらん FD 032812-0/

					Page	(of(
Project Site Nam Project No.: [] Surface So [] Subsurface [X] Sediment [] Other: [] QA Sample	- bil e Soil	val Station Great Lake	es		cation: NTC17PCSD K. Simpson :	62
GRAB SAMPLE DAT	A:					
Date:		Depth	Color	Description ((Sand, Silt, Clay, Mois	ture, etc.)
Time:						
Method:						
Monitor Reading (ppm COMPOSITE SAMPL						
<u></u>		D4-			(0	
Date: 3,27 12	Time	Depth 0-4 CM	Color		(Sand, Silt, Clay, Mois	
	1635	0-7 CM	BRN/ORAY	WET	SILT & F.	SANT
Method: PCASTC					TR. M-CR	SAND
MULT	1					
Monitor Readings						
(Range in ppm):						
		L				
	V					
	1641	V	V	4	7	
SAMPLE COLLECTK	ON INFORMAT	ION:				
	Analysis		Container Requ	irements	Collected	Other
PAH (LL), PCBs & Pe	sticides		4 oz w/m glas	· · · · · · · · · · · · · · · · · · ·		
Metals & TOC			4 oz w/m glas	ss, 4° C	V	
OBSERVATIONS / NO	OTES:			MAP:		
	,					
SAMPLED	@ 16	,45		5EE	F19 7-1	
			•			
Circle if Applicable:				Signature(s):	1 =	
MS/MSD	Duplicate ID	No.:		11-	151	
-	1			1 - 11 - 1	1 //	ľ

					Page	of
Project Site Nam Project No.: [] Surface So [] Subsurface [X] Sediment [] Other: [] QA Sample	oil e Soil	aval Station Great Lake 112G01021	es		Docation: NTC17PCSD By: K. Simpson	63
GRAB SAMPLE DAT	A:					
Date: Time: Method: Monitor Reading (ppm		Depth	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
COMPOSITE SAMPL	T					
Date:	Time	Depth	Color		(Sand, Silt, Clay, Mois	
3.17 12 Method: PUASTIC	1310	0-FCM	BRIV TO BRN/	TR	SILT & F	SAND SAND
TRUEL			gray			
Monitor Readings					 	
(Range in ppm):					 	
					 	
	1313	V			\	
SAMPLE COLLECTION	ON INFORMA	TION:				
	Analysis		Container Requ	uirements	Collected	Other
PAH (LL), PCBs & Pe			4 oz w/m gla		<i>V</i>	
Metals & TOC	>Н		4 oz w/m gla	ss, 4° C	V	
OBSERVATIONS / N	OTES:			MAP:		
	H (C	1315			F19 7-1	
Circle if Applicable:				Signature(s):	1	
MS/MSD	Duplicate I	D No.: -		ーフナー	f 51	

Page_/_ of _/

Sample ID No.: NTC17PCSD Project Site Name: Naval Station Great Lakes Sample Location: NTC17PCSD Project No.: 112G01021 Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil [X] Sediment Type of Sample: [X] Low Concentration [] Other: QA Sample Type: ∏ High Concentration GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Color Depth Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Description (Sand, Silt, Clay, Moisture, etc.) Time Depth Color 3.27.12 1458 0.4 CM BRNI WET -SICT Method: PLASTIC 5AND C - MED SAND Thouse L Monitor Readings (Range in ppm): 150 SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C 4 oz w/m glass, 4° C Metals & TOC OBSERVATIONS / NOTES: MAP: 5AMPLE @ 1510 see F19. 7-1 Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

					Page	of
Project Site Name: Naval Station Great La Project No.: 112G01021 [] Surface Soil [] Subsurface Soil [X] Sediment [] Other: [] QA Sample Type:			es		Docation: NTC17PCSE By: K. Simpson	0 65
GRAB SAMPLE DATA	N. C.					
Date:		Depth	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
Time:				l		
Method:	\					
Monitor Reading (ppm) COMPOSITE SAMPLE						
Date:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mois	sture etc.)
3.24.12	1125	0-4 cm	BRN	WFT -	CILT	, , , , , , , , , , , , , , , , , , ,
Method: PLASTIC	1123		- bk N		TR F-C	SAND
				+	TO ROOT	5/// C
THU WELL	 		 	+	110 1-21	·
Monitor Readings			 	 	 	
(Range in ppm):			 	 	 	
				 	 	
			 	 	 	
	—		 	 	 	
	W			 	 	
	1130	Y	<u> </u>	<u> </u>	<u> </u>	
SAMPLE COLLECTIO		TION:				
	Analysis		Container Requirements		Collected	Other
PAH (LL), PCBs & Pes	sticides		4 oz w/m glass, 4° C 4 oz w/m glass, 4° C			
Metals & TOC	<u></u>		4 02 W/III gia	ass, 4°C		
			 			
OBSERVATIONS / NO	TES:			MAP:		
< h.u	Di co	a 112)		266	A9 7-1	
フルベ	PUCD C	2 1132		500		
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:		-		
		AS		x1	51	

Page (of (NTC17PCSD 66 Sample ID No.: Project Site Name: Naval Station Great Lakes Sample Location: NTC17PCSD 66 Project No.: 112G01021 Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil Type of Sample: [X] Sediment [X] Low Concentration [] Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Color Date: Depth Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Time Depth Color 3-14-17 0-4 cm SICT 1203 BRH WET F- M SAND Method: PLASTIC TN RUOTS TRULE 71 Monitor Readings (Range in ppm): 1208 SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected Other PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C 4 oz w/m glass, 4° C Metals & TOC OBSERVATIONS / NOTES: MAP: 5 My PCGO @ 1210 see Fig. 7-1 Circle if Applicable: Signature(s): 11156 MS/MSD **Duplicate ID No.:**

					Page	<u>l</u> of <u>l</u>
Project Site Name: Naval Station Great Lake Project No.: 112G01021 [] Surface Soil [] Subsurface Soil [X] Sediment [] Other: [] QA Sample Type:			es		cation: NTC17PCSI y: K. Simpson	067
GRAB SAMPLE DATA	A:					
Date:		Depth	Color	Description ((Sand, Silt, Clay, Mois	sture, etc.)
Time:					-	
Method: Monitor Reading (ppm	. \.			//		
COMPOSITE SAMPL						
Date:	Time	Depth	Color	Description ((Sand, Silt, Clay, Mois	sture, etc.)
329.12	1508	0-4 cm	BRH	WET -	SICT	
Method: PLASTIC			1	TV	~	SAND
Much		 	 	TR.	RUOTS	
Monitor Readings	 		 		i , , , , , , , , , , , , , , , , , , ,	-
(Range in ppm):		 		 		
(Range in ppin).						
		 	 	-	-	
	 	 				
	 	 		 	+	
		 	 	 	}	
	1514	- J	 	 	₩	
	12.1	<u> </u>	4	 		
SAMPLE COLLECTION	N INFORMA	TION				
	Analysis		Container Requ	uirements	Collected	Other
PAH (LL), PCBs & Pes			4 oz w/m glass, 4° C		~	
	H		4 oz w/m gla	ass, 4° C		
						
			<u> </u>			
OBSERVATIONS / NO	OTES			MAP:		
SAMPI	(H) (Q	142		366	F19 7-	<i>l</i>
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate II	D No.:				
		5 115		1-1-A	フィー	

					Page	e of
Project Site Nam Project No.: [] Surface So [] Subsurface [X] Sediment [] Other: [] QA Sample	oil e Soil	aval Station Great Lake	95		ocation: NTC17PCS By: K. Simpsor	D 68
GRAB SAMPLE DATA	A:					
Date:		Depth	Color	Description (Sand, Silt, Clay, Moisture, etc.)		
Time:						
Method: Monitor Reading (ppm	· ·			- Armania - Arma		
COMPOSITE SAMPL						
Date:	Time	Depth	Color	Description	(Sand, Silt, Clay, Moi	sture. etc.)
3.29.12	1533	0-4 cm	BRK	WIT	- SILT	,
Method: PCASTYC	132		<u> </u>	7)	2 F TOCR	SAND
Method: 1 St.	 				R RUOTS	
					<u>, (C. 16667-3</u>	
Monitor Readings	 					
(Range in ppm):				- · · · · -		
	<u> </u>					
				1811 E		
	V					
	1539	<u> </u>	4		<u> </u>	
SAMPLE COLLECTION	ON INFORMA	TION:				
	Analysis		Container Requirements Collected		Other	
PAH (LL), PCBs & Pe	sticides			4 oz w/m glass, 4° C		
Metals & TOC			4 oz w/m gla	ss, 4° C	<u> </u>	
				- -		
						
OBSERVATIONS / NO	OTES:			MAP:		
	<u> </u>				-107	
SAN	APLED	@ 1540		566	F19 7-	/
	., -0	<u> </u>	•			
				-		
				<u> </u>		
Circle if Applicable:				Signature(s):	1 -	
MS/MSD	Duplicate II	D No.:	-	カバー	151	
•				I /5. //		

					Page	<u>(</u> of(_
Project Site Name: Project No.: Surface Soil Subsurface Soil X Sediment Other: QA Sample Type:			Sampled E C.O.C. No Type of Sa [X] Low (Acation: NTC17PCSI By: K. Simpson	069	
GRAB SAMPLE DATA	V.					
Date: Time: Method: Monitor Reading (ppm) COMPOSITE SAMPLE		Depth	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
Date:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
3.19.12	1351	0 4 cm		WET-	SILT	Julius, 222.,
Method: PCASTIC	1	1	i	TIL	F SAND	
TRULE				T	R ROOTS	
Monitor Readings			1			
(Range in ppm):					ALSU -	
(1,000,000,000,000,000,000,000,000,000,0					TRMTO	CR
						SAND
		 			 	
	1358			<u>.</u>		
	1358					
	12.30					
		 				
SAMPLE COLLECTION	NINEORMA	TION				
	Analysis	d Carsinina and a second	Container Requ	ilrements	Collected	Other
PAH (LL), PCBs & Pes			· · · · · · · · · · · · · · · · · · ·		Collected	
Metals & TOC	200.000		4 oz w/m gla			† 1
						1
OBSERVATIONS / NO)TES:			MAP:		
S Amp	LEO Q	1400		SE E	F19 7-1	
	Dunlingto I	D No.			. 	
MS/MSD	Duplicate I	D NO.:		111	5/2	

Page / of /

Project Site Name: Naval Station Great Lakes Project No.: 112G01021		es	Sample ID No.: Sample Location Sampled By:	NTC17PCSD 70 NTC17PCSD 70 K. Simpson	
[] Surface So [] Subsurface				C.O.C. No.:	K. Simpson
[X] Sediment [] Other: [] QA Sample	Туре:			Type of Sample: [X] Low Concert [] High Concert	
GRAB SAMPLE DATA	A:				
Date:		Depth	Color	Description (Sand,	Silt, Clay, Moisture, etc.)
Time:					
Method:	\·				
COMPOSITE SAMPL					
Date:	Time	Depth	Color,	Description (Sand	Silt, Clay, Moisture, etc.)
3.28.12	1256	0-4 cm	5/1A>/	WET SIL	
Method: PL#571C	1776	U T CMI	ouve buty	Th	F. SAND
Method: PCITIC	 		ocioe spiny		ROOTS
	-		· · · · · · · · · · · · · · · · · · ·	SIME	10015
Monitor Readings	-				
(Range in ppm):					· · · · · · · · · · · · · · · · · · ·
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	<u> </u>				
	1306		<u>u</u>	<u> </u>	
SAMPLE COLLECTION	ON INFORMA	TION:			
	Analysis		Container Requ		ollected Other
PAH (LL), PCBs & Pe	sticides		4 oz w/m glass, 4° C		/
Metals & TOC			4 oz w/m glass, 4° C		
					
[
OBSERVATIONS / NO	OTES:			MAP:	
SAMPI	ED 0	1310		SEE FIG	7-1
Circle if Applicable:				Signature(s):	
MS/MSD	Duplicate II	O No.:		1 / / <	
		_		ールコノ	
L	<u> </u>				

Page / of / NTC17PCSD 7/ Sample ID No.: Project Site Name: Naval Station Great Lakes Sample Location: NTC17PCSD 7 Project No.: 112G01021 Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil Type of Sample: [X] Sediment [X] Low Concentration [] Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Color Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Time Depth Date: Color 3.20.12 315 0-4CM SILT SAND Method: PL ASTIC ROUT Mont Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Container Requirements** Collected Other **Analysis** PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C Metals & TOC 4 oz w/m glass, 4° C OBSERVATIONS / NOTES: MAP: 5AMPIED @1325 SEE F19 7-1 Signature(s): Circle if Applicable: 11 AEL MS/MSD **Duplicate ID No.:**

Page \(\lambda\) of \(\lambda\) Sample ID No.: NTC17PCSD 7 Project Site Name: Naval Station Great Lakes Project No.: 112G01021 Sample Location: NTC17PCSD Sampled By: K. Simpson [] Surface Soil C.O.C. No.: [] Subsurface Soil [X] Sediment Type of Sample: [X] Low Concentration [] Other: [] High Concentration □ QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Color Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Date: Time Depth Color 3 28.12 BRND 0-4 cm 1333 SILT Method: FLASTIC SIRAY SAND 2007 c move Monitor Readings (Range in ppm): 1345 SAMPLE COLLECTION INFORMATION: Collected Other **Analysis Container Requirements** PAH (LL), PCBs & Pesticides 4 oz w/m glass, 4° C Metals & TOC 4 oz w/m glass, 4° C OBSERVATIONS / NOTES: MAP: SAMPLED @ 1345 SEE FIG 7-1 Signature(s): Circle if Applicable: Duplicate ID No.: MS/MSD

Tt	Tetra Tech NUS, Inc.

WATER QUALITY METER CALIBRATION LOG

SITE NAME: PROJECT No.: 112G01021 SERIAL NUMBER: FINAL READINGS Calibration Of Performing PH COND DO Turb TEMP PH COND DO Turb Standard Calibration Calibration (S.U.) (mS/cm) (mg/L) (NTU) (°C) (S.U.) (mS/cm) (mg/L) (NTU) (°C) (Lot No.)	Remarks and Comments
of Performing PH COND DO Turb TEMP PH COND DO Turb TEMP Standard	and
3.27.12 KES 3.94 4.49 20.20 1.1 13.05 4.00 4.51 10.66 0 13.19 HONIBA MUTO CAL	
3.28.12 KES 4.16 4.48 7.43 0 15.96 3.99 4.50 10.02 0 15.96 WT TINAGELJ3	
3.29.12 KES 4.17 4.69 16.91 1.4 15.82 3.99 4.50 13.79 0 15.82 EXP 12/12	

INSTRUMENT CALIBRATION REPORT

Calibrated With Horiba Auto-Cal Solution Lot Number T1N4G2J3

		Method	Before Calibration	After Calibration		
<u>Parameter</u>	Conductivity 4.49 ms/cm					
	PH 4.01	Auto	4.0	4.0		
	D.O.mg/l	Auto	9.45	10.45		
	D.O. %	Auto	103.50%	114.30%		
	<u>Turbidity</u>	Auto	0	0		
Accessories	Flow Cell x x x x x 2 Cal Cups x SensorGuard x	Auto Cal x Batteries x Manual x				

Model Horiba U-52
Serial # RWyXyM40
Handset # FJGFHX05M
Tech Initials TL
Date 3/26/11

Photo 1: Benthic Invertebrate Sample Collection

Photo 2: Sediment Trap Installation

Photo 3: Sediment Trap

Photo 4: Sediment Traps Following Rain Event

Photo 5: Sediment Trap out of Position following Storm Event

Photo 6: NTC17PCSD53 Site Sampling Location Looking Upstream

Photo 7: NTC17PCSD53 Site Sampling Location Looking Downstream

Photo 8: NTC17PCSD59 Site Sampling Location Looking Upstream

Photo 10: NTC17PCSD66 Reference Sampling Location Looking Upstream

Photo 11: NTC17PCSD66 Reference Sampling Location Looking Downstream

APPENDIX B

BENTHIC COMMUNITY SURVEY REPORT AND PLOTS OF BENTHIC COMMUNITY

METRICS VERSUS SEDIMENT CONCENTRATIONS

Benthic Macroinvertebrate Conditions and Aquatic Life Habitat Characterization for Site 17 – Pettibone Creek

Naval Station Great Lakes Great Lakes, Illinois

Prepared for:

Naval Facilities Engineering Command Midwest 201 Decatur Avenue, Building 1A Great Lakes, Illinois 60088

Prepared by:

Tetra Tech, Inc. Center for Ecological Sciences 400 Red Brook Boulevard, Suite 200 Owings Mills, Maryland 21117

Table of Contents

L	ist of Fi	gures	i
		ables	
1		oduction and Background	
2		hods	
	2.1	Quality Assurance / Quality Control Process	
3		ults	
	3.1	Sample Collection and Processing	5
	3.2	Benthic Sample Composition	7
	3.3	Benthic Index Results	8
	3.4	Index Variability	12
	3.5	Habitat Conditions	
	3.6	Pebble Counts	15
4	Inte	rpretation and Recommendations	15
5	Refe	erences Cited	21

Appendix A. Field Data Sheets.

Appendix B. Site Photos.

Appendix C. Taxonomic Data Quality Control Report.

Appendix D. Benthic Macroinvertebrate Sample Processing Information and Data.

List of Figures

Figure 1. Site location map. Benthic samples and habitat observations were made in the sampling locations shown in red
Figure 2. North Branch test site SD 60 looking upstream (a., left photo) and South Branch reference site
SD 67 looking upstream (b., right)
threshold between "Fair" and "Poor" biological conditions
arranged from upstream to downstream positions. The reference and test channels meet at the lower end of site SD62. The horizontal dashed line is the threshold between "Fair" and "Poor" biological conditions.
Figure 5. The horizontal dashed line (QHEI = 55) is the threshold between "Good" and "Fair" conditions (Ohio EPA, 2006).
Figure 6. QHEI values in relation to stream reference status and sites
Figure 7. Examples of habitat conditions that are "Good" (reference site SD68 looking upstream, left photo) and "Fair" (poorest in this study, test site SD59 looking downstream, right photo)
Figure 8. Biological index (mIBI) scores in relation to QHEI scores, showing thresholds between "Fair" and "Poor" biological conditions (horizontal line) and "Good" and "Fair" habitat conditions (vertical
line)
List of Tables
Table 1. Measurement quality objectives (MQO) recommended for tracking key performance measures. 5
Table 2. Comments on sampling station condition from field observations. No comments were entered for stations SD60 or SD68
Table 3. Sorting and subsampling bias
Table 4. Taxonomic identification precision
Table 5. Macroinvertebrate Index of Biotic Integrity (mIBI) and component metric values and scores in
reference (Ref) and test sites
Creek watershed (unpublished data used in mIBI calibration [Tetra Tech, 2007])
Table 7. Qualitative habitat evaluation index (QHEI) scores and ratings of the individual variables for
each of the sampling stations.
Table 8. Percent particle size distribution for each sampling station determined by systematic random,
100-particle modified Wolman pebble count. Percent sand, silt, and clay (%SSC) is a general indicator of
substrate granularity. The median particle size (MedSize) and size classes are shown in millimeters 16 Table 9. Ranking of sites from best to worst biological condition based on the mIBI score

Tetra Tech, Inc

1 Introduction and Background

This report presents the results of the benthic macroinvertebrate and habitat investigation conducted at Site 17 – Pettibone Creek is located at Naval Station Great Lakes (NSGL) in Great Lakes, Illinois. The benthic macroinvertebrate assemblage is a reliable indicator of ecological integrity (Tetra Tech, 2007, Bailey et al. 2004). The diversity and composition of macroinvertebrate samples are measurably responsive to a range of pollutants, including toxicants (Beasley and Kneale, 2004, Beketov and Liess, 2008), nutrients (Smith et al., 2007, Heatherly et al., 2007), metals (Clements, 2004, Schmidt et al., 2002), and physical habitat conditions (Heatherly et al., 2007, Lammert and Allen, 1999, Rogers et al., 2002). The Illinois Environmental Protection Agency (Illinois EPA) uses the Macroinvertebrate Index of Biotic Integrity (mIBI; Tetra Tech, 2007) as an indicator of biological conditions for assessment of aquatic life uses (ALU) in their Clean Water Act (CWA) programs. This index is responsive to a broad range of stressors and is appropriate for use in assessing conditions in the study area. Measures of the biological sample (metrics) that comprise the index or are otherwise responsive were also valuable for interpreting macroinvertebrate conditions.

Site 17 comprises Pettibone Creek (North and South Branches) and the Boat Basin. The North Branch of Pettibone Creek originates in North Chicago, enters the northwestern corner of NSGL, and flows south and east through the Naval Station until it enters the Boat Basin and discharges into Lake Michigan along the western shoreline (Figure 1). The South Branch of Pettibone Creek originates in a residential area southwest of the Naval Station, flowing northward through a golf course and the Naval Station. The North and South Branch of Pettibone Creek join approximately 1,500 feet west of Lake Michigan.

The majority of NSGL activities occur on a plateau atop a steep bluff that rises 70 feet above the beach along Lake Michigan. Pettibone Creek and its tributaries flow within a ravine that divides this plateau and discharges to the Boat Basin. Pettibone Creek ranges between 15 and 30 feet in width, and several inches to 2 feet in depth. Storm sewers that collect stormwater from a large section of the City of North Chicago drain to the creek upstream of Navy property (Illinois EPA, 1995) and 30 NSGL stormwater sewer system outfalls from roadway drainage systems drain to Navy property (Halliburton NUS, Inc., 1993). Because of the industrial and urban nature of this watershed, Pettibone Creek is subject to flash flooding and associated erosive forces during storm events. Sediment present in Pettibone Creek is mobile due to flash floods, and based on layering observed during previous Boat Basin investigations, creek bottom sediment is believed to deposit in layers eroded during storm events.

As can be seen in the aerial photograph (Figure 1), a variety of land uses currently surround NSGL, including urbanized and industrial areas to the north, industrial use to the west, and a mixture of public use land and residential neighborhoods to the south. The NSGL fronts 1.5 miles of Lake Michigan shoreline and has provided facilities and support to training activities and a variety of military commands since 1911 and also includes the Navy's only boot camp. A dirt path along the North Branch of Pettibone Creek is used for recreation, hiking, jogging, and walking (Figure 2a). The South Branch of Pettibone Creek flows at the base of steep slopes behind buildings and is less accessible and less used (Figure 2b). Pettibone Creek is not used as a drinking water source; however, people may wade and play in the creek. Fish are present in the creek and fish have been observed migrating upstream in the spring (Illinois EPA, 1995) and fall. No federally listed endangered or threatened species are known to exist in the area. The Mudpuppy salamander is listed as a threatened species that is protected by the State of Illinois. NSGL is conducting a study to determine whether the Mudpuppy salamander is present in Pettibone Creek and the Harbor at NSGL, along with some additional locations. One sampling event was conducted in July 2011, but no Mudpuppy salamanders were observed or captured in the area during this event. Two additional

sampling events are planned for this area in 2012. Previous habitat assessments have determined that habitat suitable to threatened or endangered species does not exist in Pettibone Creek, at least in part because of the highly developed nature of the surrounding land (U.S. Navy, 2010). Fish consumption from recreational fishing is not an exposure pathway of concern because the Illinois EPA has instituted fish advisories to limit consumption of fish from Lake Michigan due to polychlorinated biphenyl (PCB) contamination.

Figure 1. Site location map. Benthic samples and habitat observations were made in the sampling locations shown in red.

Figure 2. North Branch test site SD 60 looking upstream (a., left photo) and South Branch reference site SD 67 looking upstream (b., right)

Former industries located upstream of NSGL include the North Chicago Refiners and Smelters (NCRS), the Vacant Lot, and Fansteel. Discharges from these industries in combination with several storm sewers collecting water/runoff from a large section of the City of North Chicago, have contributed to elevated concentrations of contaminants in Pettibone Creek and Boat Basin sediments. These facilities were turn-of-the-20th century manufacturing facilities that produced tantalum mill products, non-ferrous metals, and zinc oxide.

The Navy identified potential areas (Navy and non-Navy) where hazardous materials may have been released to the environment at NSGL in the Initial Assessment Study (IAS) (Rogers, Golden, & Halpern and BCM Eastern Inc., 1986). The IAS identified 14 potentially contaminated sites along with potential sources such as surface runoff or fallout from engine exhaust from nearby roadways, historical pesticide usage, and volatile organic compounds (VOCs) detected in the groundwater samples collected from monitoring wells (Tetra Tech, 2005). A Watershed Contaminated Source document was prepared, which summarized activities that may have had an impact on sediments in Pettibone Creek and the Boat Basin (Tetra Tech, 2003a).

Pettibone Creek is in a stream valley with steeply eroded slopes. The topography of the valley includes a moderately steep stream gradient and banks and hillsides with 30- to 60-percent slopes that form the ravine through which Pettibone Creek flows. The valley elevations vary from approximately 600 feet above mean sea level (msl) at the tops of the Pettibone Creek hillsides to approximately 577 feet above msl at the Boat Basin, where the Pettibone Creek discharges to Lake Michigan (Tetra Tech, 2003b). The Pettibone Creek watershed drains an area of 4.2 square miles, and the creek consists of North and South Branches, each with minor tributary branches. The creek flows through well-defined ravines within NSGL. In general, flow in Pettibone Creek is eastward, with flow from both the North and South Branches joining within the limits of NSGL Property.

There is very little floodplain area along Pettibone Creek because of the steeply sloped banks. The North Branch of the creek has a short time of concentration (i.e., time it takes a unit of water to run the water course) because the source of water is primarily from an urban area with low infiltration rates and fast runoff rates during storms. As a result, Pettibone Creek is susceptible to flash floods characterized by high channel velocities and great erosive potential. The Illinois State Water Survey calculated the average flow

Tetra Tech, Inc

rate of Pettibone Creek to be less than 10 cubic feet per second (cfs), which greatly increases during periods of precipitation (Tetra Tech, 2003b).

Pettibone Creek was partitioned into reference and test stream channels for this investigation. The test stream channel included the North Branch of Pettibone Creek starting directly downstream of a long culvert that runs south beneath Route 137 and ends at the Boat Basin and Lake Michigan. This is the area in which there is concern of sediment contamination that may be impacting the stream ecosystem. The potential contaminants and stressors include heavy metals, organic compounds (primarily polynuclear aromatic hydrocarbons [PAHs]), and harsh habitat conditions. Nine sampling sites, each defined as a 300 feet channel reach, were designated in the North Branch, including one in a small tributary. The South Branch of Pettibone Creek was sampled as a comparable standard, or reference, because it was assumed to be less impacted by some of the industrial stressors prevalent in the North Branch. However, the South Branch is subject to similar ambient, urban stressors as the North Branch, such as nutrient inputs, runoff contaminants, and flashy hydrology. Five sampling sites were defined on the South Branch, including one on a small tributary. The tributary to the South Branch is very small and its watershed appears to have mostly impervious land uses much like the watershed of the North Branch. The lowest portion of the South Branch was not sampled because it was suspected of exposure to waterborne contaminants because of the possibility of floodwater inundation (which would mix contaminants from the North Branch of Pettibone Creek).

2 Methods

Field sampling and sample processing for benthic macroinvertebrates followed the Draft Tier II Pettibone Creek Sampling and Analysis Plan (Tetra Tech, 2012), and were intentionally identical to those of Illinois EPA (Tetra Tech, 2007). In brief, field sampling methods included using a long handled D-frame net with a 595 µm mesh to produce a multi-habitat composite sample (a 20-jab sampling technique) from each of the sampling reaches. In the laboratory, a 300 organism subsample was sorted and organisms were identified to specified levels of taxonomic detail (usually genus). Fieldwork occurred during the week of March 26-30, 2012 and laboratory processing was completed by April 11, 2012.

Taxonomic lists for each site were entered into EDAS, a Microsoft Access-based relational database (Tetra Tech, 1999). Metrics of the mIBI were calculated in the database, scored, and combined as a single index value, according to Illinois EPA methods (Illinois EPA, 2011). Analysis included comparison of index and metric values within and among reference (South Branch) and test (North Branch) site types. Narrative condition ratings have been associated with the mIBI scale (Illinois EPA, 2011) and were used in this study to generally characterize site level biological condition. However, the samples were not collected during the sampling season used by the Illinois EPA (the index period), and thus, the ratings are not necessarily indicative of aquatic life use attainment. The best application of the mIBI in this study is for comparisons between reference and test site samples, all of which were collected in the same week.

Variability of the index in reference sites (field sampling precision) was described using standard deviations of mIBI scores within different sets of sites (Stribling et al., 2008). Because the reference sites were very close to each other (Figure 1), the pairs above and below the tributary were considered as replicates for mIBI precision estimates. The tributary itself was thought to be essentially different than the main channel of the South Branch due to its size and contributing watershed. With the precision estimates, statistical comparisons of mIBI scores among individual sites were possible. Precision was quantified as the 90% confidence interval (CI90), which is calculated as a multiple of the root mean square error (RMSE * 1.645) from Analysis of Variance (ANOVA) with mIBI scores from the two pairs of reference sites. The CI90 is the interval around an observation in which we expect to find the true mean in 90% of the cases.

Tetra Tech, Inc

Stream habitat conditions were characterized using the Qualitative Habitat Evaluation Index (QHEI) (Tetra Tech, 2012), which is calculated by summing scores for six individual measurements of instream and riparian conditions. In addition, the substrate particle size in each sampling site was characterized using systematically random pebble counts.

2.1 Quality Assurance / Quality Control Process

Quality assurance/quality control (QA/QC) is a series or program of activities designed to evaluate data quality and to document data characteristics. To provide a measure of data quality (i.e., the reliability of these assessments), performance characteristics for the various laboratory standard operating procedures (SOPs) were established, along with recommended measurement quality objectives (MQO) for tracking performance (Table 1). This documentation is intended to enhance defensibility of data and assessments. QA/QC on laboratory sample processing (sorting efficiency [bias of the sorting/subsampling process] and taxonomic identification precision) was performed on three randomly selected samples for each process, and was completed by April 25, 2012. For sorting efficiency, the sort residue from three samples was checked by an independent laboratory. The numbers of missed organisms recovered in the sort residue were used to calculate percent sorting efficiency (PSE, Flotemersch et al., 2006).

To determine estimates of precision for taxonomic enumeration and identification (Stribling et al., 2003), three samples were randomly selected for re-identification by an independent laboratory/taxonomist. Samples were sent to the second laboratory with site information only (i.e., without identifications), thus representing blind samples. Results from each lab were compared and precision estimates were calculated (percent difference in enumeration [PDE], percent taxonomic disagreement [PTD], Stribling et al., 2003).

Table 1. Measurement quality objectives (MQO) recommended for tracking key performance measures.

	g j postania i i i i i i i i i i i i i i i i i i
Performance Characteristic	MQO
Sorting/subsampling accuracy (percent sorting	PSE≥90, for ≥90% of externally QC'd sort residues
efficiency [PSE])	
Taxonomic precision (percent taxonomic	Median PTD ≤15% for overall sample lot; samples
disagreement [PTD])	with PTD ≥15% examined for patterns of error
Taxonomic precision (percent difference in	Median PDE \leq 5%; samples with PDE \geq 5% should
enumeration [PDE])	be further examined for patterns of error

3 Results

3.1 Sample Collection and Processing

Recent site disturbance was observed in the two most downstream test sites (SD63 and 64), in which channel clearing one day prior to sampling was noted in field comments (Table 2). Through conversations with on-site personnel, the sampling crew determined that channel clearing is a standard procedure for these sites, that this incidence was not unusual, and that the benthic samples from these sites should be comparable to the other samples. Other field comments suggest that the channels are subject to extreme flows, as evidenced by scouring to the silt/clay layer, eroded banks, and rip-rap armored banks. Habitat observations (Appendix A) and photos (Appendix B) corroborate these comments.

Table 2. Comments on sampling station condition from field observations.

StationID ^a	Site Type	Comment
SD53	Test	Reach is located directly downstream of long culvert that runs south beneath route 137. Deep pool on upstream end, not characteristic of rest of reach. Left bank shored with rip-rap (looks to be construction debris, some of which has fallen into stream channel). Relatively low flow at time of sampling. Attached algae throughout reach. Flows look to be flashy during precipitation events.
SD54	Test	Stream is reasonably shallow throughout reach. High amount of bank erosion.
SD59	Test	High level of bank erosion. Portion of reach scoured to silt-clay layer.
SD60	Test	Left bank shored with rip-rap for majority of reach. Right bank erosion evident. Majority of reach lacks in stable/quality habitat.
SD61	Test	Large portion of right bank is rip-rap. Reach alternated between shallow and deep areas due to channel modifications (See photos).
SD62	Test	Heavily eroded and incised stream. Some rip-rap present on banks and within channel (old construction debris).
SD63	Test	Highly modified channel. Heavy erosion outside of reach (upstream and downstream). Much of substrate looks to be construction debris. Base maintenance normally clears woody debris from channel for flood control. Area was partially cleared prior to sampling
SD64	Test	Bottom of reach was disturbed a day prior to sampling due to fallen trees and subsequent maintenance crew cleanup. The channel is normally cleared for flood purposes. Entire left bank is shored with rip-rap.
SD58	Test Trib.	Reach located in narrow v-shaped valley with heavily eroded banks. Areas of reach are scoured down to silt-clay layer.
SD65	Reference	Heavily eroded banks with many trees falling into channel. Portions of reach scoured to silt-clay layer.
SD66	Reference	Heavily eroded banks. Portions of reach scoured to silt-clay layer.
SD67	Reference	Right bank riparian is a cleared area (mowed grass).
SD68	Reference	Reasonable amount of bank erosion along bends. Upstream end of reach is large pool with decent bank stability/bank habitat (undercuts/deep water) although substrate is predominantly fine. Downstream portion of reach indicates high erosion potential.
SD69	Ref. Trib.	Very small stream, low flow, unstable/eroded banks.

a: For this analysis, station identifiers have been abbreviated from the longer names used elsewhere. For example, "SD53" was used here where "NTC17PCSD53" has been used in the SAP.

Primary taxonomic data are represented in Appendix C. QC assessment indicated that laboratory processing of the benthic macroinvertebrate samples met the MQO. For the sorting process, the PSE showed that more than 90% of organisms were sorted initially in each of the three samples tested (0% failure of the MQO), so no issues or corrective actions were necessary (Table 3). There was also adequate taxonomic precision, with < 5 DPE and < 15 PTD in each sample (0% failure of the MQO), so no issues or corrective actions were necessary (Table 4). Detailed taxonomic comparison results are presented in Appendix D.

Table 3. Sorting and subsampling bias.

	N	•		
Station ID	Original	Recovered	Total	PSE
SD-53	299	16	315	94.9
SD-67	247	9	256	96.5
SD-68	269	8	277	97.1

Table 4. Taxonomic identification precision.

Station ID	PDE	PTD
SD59	1.0	2.7
SD61	0.2	6.7
SD62	1.3	3.7
mean	8.0	4.4
st. dev.	0.57	2.08

3.2 Benthic Sample Composition

In the samples, 3925 individuals were identified from 70 taxa (Appendix D). Insects were represented by 52 taxa and 40% of the individuals. Most of the organisms in the samples were worms (Annelida: Oligochaeta) and chironomids (Insecta: Chironomidae), which are typically tolerant of pollutants (Merritt et al., 2008).

By far the most abundant group was the worms (Oligochaeta), which made up 45% of the individuals. The mIBI calculation requires worm taxonomic identification data only at subclass (Oligochaeta), the coarseness of the identifications likely reducing sensitivity of the index among the sites. However, the taxonomist identified worms to genus for most specimens. While most taxa occurred in both reference and test sites, three taxa occurred only in the test sites; *Bothrioneurum*, *Paranais*, *Potamothrix*, *Pristina*. Two other worms, *Ilyodrilus* and *Chaetogaster*, only occurred in one and two reference sites, respectively.

Of the insects identified in the samples, the predominant type was midges (Diptera: Chironomidae). They made up 85% of the insect individuals in 28 taxa. Midges generally burrow in soft sediments and are tolerant of pollutants. According to tolerance values associated with each taxon by the Illinois EPA, not all of the midges were characterized as tolerant genera. Taxa with high tolerance values ($TV \ge 7$) are considered tolerant of pollution. Seven midge taxa occurred only in reference sites, including Ablabesmyia (TV=6), Dicrotendipes (TV=8), Micropsectra (TV=4), Nanocladius (TV=3), Parachironomus (TV=8), Paraphaenocladius (TV=6), and Rheocricotopus (TV=6). Two tolerant midge taxa were only found in test sites, including Chironomus (TV=11) and Zavrelimyia (TV=8).

Non-midge flies (Diptera) made up about 1% of the individuals. Other insects included beetles (Coleoptera), dragonflies (Odonata), and caddisflies (Trichoptera), each comprising almost 5% of the individuals. There were only three beetle taxa, *Stenelmis* (occurring in both reference and test sites), Curculionidae (a single individual occurring in a test site), and *Agabus* (a single individual occurring in the reference tributary). The dragonflies were more diverse in the reference sites, with four taxa. In test

Tetra Tech, Inc

sites, only two taxa were observed. One damselfly taxon (Odonata: Calopterygidae: *Calopteryx*) was more common in test sites than it was in reference sites.

Test site NTC17PCSD63 had a high number of taxa (30) and higher than average concentrations of copper, lead, and zinc. Five of the 30 taxa (17%) were considered tolerant (tolerance values \geq 7). In comparison, eight of 31 taxa (26%) were tolerant in reference site NTC17PCSD67, with the highest number of taxa and low concentrations of metals. High diversity does not appear to be due to tolerant taxa in this case. The tolerant taxa that were common to both samples included Oligochaeta, Tanytarsus, Cryptochironomus, and Stenelmis. Unique to the test site was Chironomus, which has the highest possible tolerance value (11).

It appears that taxa diversity was not driven by pollution tolerant taxa. Taxa richness is typically driven by sensitive taxa, that tend to occur in lower numbers and to disappear when stresses cause unsuitable conditions. Tolerant taxa are sometimes present in low numbers even when environmental conditions are relatively good and they increase in numbers as conditions worsen. Changes in abundance may have no effect on richness. Using the same samples discussed above, two taxa in the test sample were intolerant of pollution (tolerance values ≤3) as were three taxa in the reference sample.

Taxa in the sensitive insect orders Ephemeroptera, Plecoptera, and Trichoptera (EPT; mayflies, stoneflies, and caddisflies) are commonly used to indicate biological conditions in streams. Only Trichoptera were found in the project samples. Several mayflies are sensitive to metals and stoneflies usually require cold, well-oxygenated waters. The study site has low level metal contamination and may be warm during summer low flows, conditions that are not generally suitable for mayflies and stoneflies. The Trichoptera taxa were in the moderately tolerant *Hydropsyche* and *Cheumatopsyche* (Trichoptera: Hydropsychidae). These are net-spinning filter feeders that were equally common in reference and test sites.

The taxonomist noted that some of the isopods were parasitized by acanthocephalans, or thorny-headed worms, however, it is unknown whether this is an indicator of environmental stress (Todd Askegaard, personal communication, April 9, 2012). As a primary part of their basic life cycle, acanthocephalans live in fish intestines, and are expelled as eggs in feces, shortly becoming ingested by isopods (Crustacea: Isopoda: aquatic sowbugs) (and probably other organisms, as well). The parasite causes the isopod to become more active and may cause its pigmentation to become lighter, likely increasing their visibility against leaf litter and potential of becoming targets of fish predation. Ingestion of the infected sowbugs perpetuates the cycle. The parasite can cause considerable damage to the fish intestine.

3.3 Benthic Index Results

The samples had mIBI scores indicating biologically degraded conditions, with assessment ratings of "Fair" and "Poor" (Table 5). The threshold between "Fair" and "Poor" is 20.9 index points. In general, the Pettibone Creek reference site mIBI scores were in the "Fair" assessment category and test site index values were rated as "Poor" (Figure 3). However, there was some crossover. The small tributaries of both the reference and test sites had the lowest mIBI values in their respective categories. These small tributaries may have intermittent flow, which would be a stressful condition compounding any stresses due to water quality conditions and leading to the "Poor" assessments by the mIBI. The test sites with scores in the "Fair" range were in the lower portions of the channel (Figure 4). A t-test of mIBI scores among non-tributary sites indicated a significant difference (p = 0.009) between reference and test site scores.

The scores of each of the metrics were consistently low, with the exceptions of Total Taxa and the Modified Biotic Index (MBI, a composite score of pollution tolerances for individuals), which have

moderate scores (Table 5). Average metric scores in reference sites were consistently higher than the average of test site scores. No mayflies were identified in any sample, so the Ephemeroptera Taxa metric was invariable among reference and test site types. The percentage of individuals that scrape substrate surfaces for food resources (%scrapers, Merritt et al., 2008) were notably higher in reference sites as compared to test sites. If scouring is frequent in the test channel, then substrate, food resources, or the scrapers themselves may be carried away during spates. In addition, contaminants accumulated in the aufwuchs (=periphyton) are consumed by scrapers, who are therefore exposed to contaminants more so than organisms that consume in some other manner. Other metrics that on average score better in reference sites compared to test sites are Total Taxa, Coleoptera Taxa, Intolerant Taxa, and the MBI.

Densities were calculated from the laboratory subsampling data, and were seen to be higher in reference sites than in test sites, in most cases (Table 5). However, the highest density was found in one of the downstream test sites. Low densities have been linked to stressful habitat and water quality conditions (Gray, 2004).

Figure 3. Distributions of mIBI scores among reference and test sites. The horizontal dashed line is the threshold between "Fair" and "Poor" biological conditions.

Figure 4. Index values (mIBI) in relation to stream reference status (reference or test) and location, arranged from upstream to downstream positions. The reference and test channels meet at the lower end of site SD62. The horizontal dashed line is the threshold between "Fair" and "Poor" biological conditions.

Table 5. Macroinvertebrate Index of Biotic Integrity (mIBI) and component metric values and scores in reference (Ref) and test sites.

StationID	SD53	SD54	SD59	SD60	SD61	SD62	SD63	SD64	SD58	SD65	SD66	SD67	SD68	SD69
Site Type	Test	Test	Test	Test	Test	Test	Test	Test	TestTrib	Ref	Ref	Ref	Ref	RefTrib
mIBI	14.0	19.4	12.6	17.2	21.3	20.8	23.5	20.2	10.4	21.3	24.1	30.3	30.5	13.3
Index Rating	Poor	Poor	Poor	Poor	Fair	Poor	Fair	Poor	Poor	Fair	Fair	Fair	Fair	Poor
Total Taxa	21	22	20	25	25	28	30	24	13	21	29	31	30	17
Total Taxa Score	45.7	47.8	43.5	54.3	54.3	60.9	65.2	52.2	28.3	45.7	63.0	67.4	65.2	37.0
Ephemeroptera Taxa	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ephem. Taxa Score	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coleoptera Taxa	0	1	0	0	0	1	1	1	0	1	1	1	1	0
Coleoptera Taxa Score	0	20	0	0	0	20	20	20	0	20	20	20	20	0
EPT percent	0.00	0.36	1.75	5.45	3.33	0.38	0.66	2.08	0.00	3.57	3.46	3.63	0.75	3.03
EPT % Score	0.00	0.49	2.36	7.36	4.50	0.52	0.90	2.81	0.00	4.83	4.67	4.90	1.01	4.10
Scraper percent	0.67	1.45	1.05	1.17	1.48	3.44	4.32	3.46	0.32	7.50	6.92	10.48	10.82	3.41
Scraper % Score	2.26	4.91	3.54	3.94	5.01	11.61	14.59	11.69	1.10	25.34	23.37	35.42	36.56	11.52
Intolerant Taxa	1	1	0	0	1	1	2	2	1	1	1	3	2	0
Intolerant Taxa Score	11.11	11.11	0.00	0.00	11.11	11.11	22.22	22.22	11.11	11.11	11.11	33.33	22.22	0.00
MBI	8.63	7.88	8.63	7.65	6.47	8.47	8.48	9.03	9.03	8.42	8.16	7.87	6.84	8.52
MBI score	38.92	51.22	38.81	54.98	74.33	41.48	41.33	32.37	32.24	42.22	46.59	51.35	68.19	40.58
Total Individuals	301	278	301	279	328	270	346	297	324	283	342	268	273	294
Density	1806	2085	2419	837	984	1157	2595	5569	1389	3980	2565	2741	4388	2756

Tetra Tech, Inc

Sample collected by Illinois EPA from other locations in the region during their standard index period had mIBI scores ranging from 14 to 63, in the "Poor", "Fair", and "Good" range (Table 6). Among the 12 Illinois EPA samples from sites between Kenosha, WI and Glencoe, IL and west as far as Libertyville, IL, the site with the lowest mIBI score also appeared to have the greatest amount of urban land use in the catchment (GoogleEarth, aerial images). No conclusions regarding the health of the benthic community in Pettibone Creek were based on this additional information.

Table 6.	Index (mIBI) scores for benthic samples collected by Illinois EPA from sites near the Pettibone
	Creek watershed (unpublished data used in mIBI calibration [Tetra Tech, 2007]).

StationID	Waterbody Name	Latitude	Longitude	CollDate	mIBI
04087258	Pike River at Cth A Near Kenosha, Wi	42.6536	-87.8504	8/24/04	52.0
04087270	Pike Creek at 43Rd Street At Kenosha, Wi	42.5970	-87.8284	8/24/04	13.8
05527729	Kilbourn Ditch at 60th Street Near Kenosha, Wi	42.5822	-87.9501	8/23/04	55.8
05527800	Des Plaines River at Russell, Il	42.4892	-87.9265	7/12/99	53.3
05527800	Des Plaines River at Russell, Il	42.4892	-87.9265	7/13/99	63.3
05527800	Des Plaines River at Russell, Il	42.4892	-87.9265	7/13/99	54.8
05527800	Des Plaines River at Russell, Il	42.4892	-87.9265	7/18/00	51.4
05527800	Des Plaines River at Russell, Il	42.4892	-87.9265	8/8/01	43.6
05527960	Mill Creek at Wadsworth, Il	42.4186	-87.9379	7/18/00	55.4
05528032	Bull C Below Milwaukee Ave nr Libertyville,Il	42.3145	-87.9623	7/17/00	59.8
05534460	N Br Chicago R At Deerfield Rd at Deerfield, Il	42.1675	-87.8290	7/17/00	28.3
05535100	Skokie River at Glencoe, Il	42.1378	-87.7845	7/17/00	27.8

3.4 Index Variability

The standard deviation of mIBI values in the four non-tributary reference sites is 4.6 index units, on a 100 point scale. The reference tributary was noted to be a very small channel and had only "Fair" habitat quality (QHEI = 52). For these reasons, it may not be an appropriate reference for the non-tributary test sites. In addition, these conditions may contribute to mIBI variability that is due to environmental conditions rather than the sampling variability that is quantified when considering index precision. If the tributary sample is included in reference sites, the standard deviation of the reference sites increases to 7.1 index units.

Confidence intervals were calculated using two sets of reference sites, the pair above the reference tributary and the pair below it. Within each set, the biological conditions were expected to be most similar because the sites were adjacent, habitat conditions were nearly identical, and water quality was assumed to be identical (no additional tributary inputs within the sets of sites, only between them). The RMSE from ANOVA for the two pairs of reference sites was 1.4 index units. This yields a CI90 of ± 2.3 index units around any single observation. This small confidence interval on a 100 point index scale indicates that the field sampling precision was very good.

When comparing one site to another, differences >2.3 index units are likely to be different due to something other than sampling error. There are four samples with mIBI scores >2.3 index units below the lowest non-tributary reference index score (Figure 4). The two best reference mIBI scores (sites SD 67 and SD68 above the South Branch tributary) are significantly higher than the other scores (p<0.05).

3.5 Habitat Conditions

Habitat quality was relatively consistent among sites, with QHEI scores ranging from 52 to 66 in reference sites and 49.5 to 61 in test sites (Table 7). Most of the reference sites had QHEI scores in the "Good" range, as did many of the test sites, the latter of which fell mostly in the lower portions of the North Branch (Figures 5, 6). The sites with the highest habitat score was reference site SD68 (Figure 7). Three test sites tied for the lowest score, SD54, SD 58, and SD 59 (Figure 7).

Appendix A presents the habitat evaluation index and use assessment field sheets. Six variables are considered in the overall QHEI score, as listed below in Table 7. Each of the variables have different maximum values, as presented on the field sheets in Appendix A. The habitat variables that were most strongly related to the QHEI score (Pearson correlation coefficient > 0.55) were instream cover, channel morphology, and pool/glide, riffle/run quality. Bank erosion and riparian zone, gradient, and substrate were not significantly related to the QHEI score (p>0.05). This may be due to low variability among sites for these variables. For example, the rating for the gradient variable was 10 in all sites. As can be seen in site photos (Appendix B), the sites have similar characteristics in terms of substrates, channel conditions, and riparian stability and vegetation.

Table 7. Qualitative habitat evaluation index (QHEI) scores and ratings of the individual variables for each of the sampling stations.

StationID	Ref/Test	A^1	В	С	D	Е	F	QHEI score
SD53	Test	4	6	10	10	10	14	54
SD54	Test	3	7	10	8	7	14	49.5
SD59	Test	3	5	10	10	9	12	49.5
SD60	Test	4	8	10	10	13	14	59.5
SD61	Test	4	8	10	10	14	14	61
SD62	Test	5	5	10	10	13	14	56.5
SD63	Test	4	9	10	14	11	13	61
SD64	Test	5	8	10	9	11	14	56.5
SD58	TestTrib	4	7	10	8	8	12	49.5
SD65	Ref	4	10	10	12	12	14	62.5
SD66	Ref	4	7	10	14	11	12	58.5
SD67	Ref	5	6	10	13	8	14	55.5
SD68	Ref	6	14	10	15	9	12	66
SD69	RefTrib	5	10	10	10	5	12	52

¹Column headers: Ref/Test, status of site as either reference or test; A, bank erosion and riparian zone; B, channel morphology; C, gradient; D, instream cover; E, pool/glide and riffle/run quality; F, substrate.

Figure 5. The horizontal dashed line (QHEI = 55) is the threshold between "Good" and "Fair" conditions (Ohio EPA, 2006).

Figure 6. QHEI values in relation to stream reference status and sites.

Figure 7. Examples of habitat conditions that are "Good" (reference site SD68 looking upstream, left photo) and "Fair" (poorest in this study, test site SD59 looking downstream, right photo).

3.6 Pebble Counts

Substrates in the North Branch of Pettibone Creek (test) were mostly gravel-sized particles (Table 8). Gravel can provide good habitat for benthic macroinvertebrates if it is not clogged with finer particles, that is, non-embedded (Waters, 1995, Wood and Armitage, 1997). The habitat benefits of gravel are that there is substantial surface area for primary production and there is a potential for interstitial spaces for organisms to hide, find food, or otherwise interact. Some sites had high percentages of silt/clay, those ≥20% are SD58, 59, 65, 67, and 68 (Table 8). These sites were also noted as being scoured, so the silt/clay was hardpan, having habitat quality comparable to bedrock. Hardpan and bedrock are stable, but with minimal surface area and interstitial spaces. The percentage of sand, silt, and clay and the median particle size among sites suggests that the upstream reference sites have more fine particles than the upstream test sites where scouring was noted.

4 Interpretation and Recommendations

Biological conditions in the Pettibone Creek stream channels on the NSGL base are somewhat or severely impaired. This is evident from the mIBI scores, that are in the "Fair" and "Poor" range, and from the composition of the samples, which are dominated by generally tolerant worms and midges. If the samples had been collected during the June to October index period specified by Illinois EPA instead of in March, the scores may have been slightly higher, perhaps improving ratings for some sites into the "Good" assessment category. This conjecture is based on the theory that some insect taxa have small developmental stages in winter that may not have been identified in the samples, but they would grow and be more readily sampled in summer samples. An increase in insect taxa would probably result in increased mIBI scores.

Judging from the available samples, biological conditions are impaired throughout the study area. Furthermore, the mIBI scores are related to environmental conditions of individual sites, including sediment chemistry and physical habitat conditions. The biological index and the QHEI were highly correlated (r = 0.69) (Figure 8), with the regression coefficient ($r^2 = 0.48$) suggesting that 48% of the variability in the biological index can be attributed to the QHEI and 52% of the variability is due to other

factors. There are obvious limitations to the benthic macroinvertebrate assemblage that are due to habitat conditions. Other factors that may be limiting biological conditions could include water quality, sediment toxicity, and unmeasured habitat factors.

Table 8. Percent particle size distribution for each sampling station determined by systematic random, 100-particle modified Wolman pebble count. Percent sand, silt, and clay (%SSC) is a general indicator of substrate granularity. The median particle size (MedSize) and size classes are shown in millimeters.

StationID	RefType	Silt/Clay	Sand	Gravel	Cobble	Boulder	%SSC	MedSize
Size classes		<.062	.062-2	2-64	64-256	>256		
SD53	Test	1	15	56	24	4	16	40
SD54	Test	7	10	68	15	0	17	40
SD59	Test	20	22	42	13	3	42	10
SD60	Test	7	16	64	7	6	23	20
SD61	Test	11	14	51	19	5	25	28
SD62	Test	12	19	61	7	1	31	14
SD63	Test	14.1	19.2	61.6	5.1	0	33.3	20
SD64	Test	9	20	57	6	8	29	20
SD58	TestTrib	20.2	8.1	62.6	8.1	1.0	28.3	20
SD65	Ref	30	5	53	12	0	35	20
SD66	Ref	12	16	69	3	0	28	14
SD67	Ref	23.2	32.3	41.4	3.0	0	55.5	0.75
SD68	Ref	33	20	37	10	0	53	0.75
SD69	RefTrib	15	15	63	7	0	30	20

The biological conditions of the sites can be ranked from best to worst based on the mIBI (Table 9). Within this list, we can compare the significance of the different mIBI scores using the CI90 of ± 2.3 index units (see Section 3.4). The best two reference sites, furthest upstream on the South Branch, have similar mIBI scores that are significantly higher than any others. The sites with mIBI scores significantly worse than the lowest reference score include test sites SD60, SD53, and SD59, and the two tributary sites. The mIBI scores are included on the site map in Figure 9 to help spatially conceptualize the gradient of biological integrity.

Tetra Tech, Inc

Figure 8. Biological index (mIBI) scores in relation to QHEI scores, showing thresholds between "Fair" and "Poor" biological conditions (horizontal line) and "Good" and "Fair" habitat conditions (vertical line).

Table 9. Ranking of sites from best to worst biological condition based on the mIBI score.

StationID	Site Type	mIBI	Similarities ¹
SD68	Ref	30.5	a
SD67	Ref	30.3	a
SD66	Ref	24.1	b
SD63	Test	23.5	b, c
SD65	Ref	21.3	c, d
SD61	Test	21.3	c, d
SD62	Test	20.8	d
SD64	Test	20.2	d
SD54	Test	19.4	d, e
SD60	Test	17.2	е
SD53	Test	14	f
SD69	RefTrib	13.3	f
SD59	Test	12.6	f, g
SD58	TestTrib	10.4	g

1: mIBI scores with identical letters are not significantly different (p>0.1)

Figure 9. Site location map. Benthic sampling locations include scores for the mIBI in parentheses.

In the downstream half of the North Branch (test), index scores were similar to those in the downstream reference site samples (South Branch). Habitat quality in the downstream test sites is similar to habitat quality in the reference sites. Without examining sediment chemistry and water quality, we might expect that the downstream reference and test sites would have similar biological conditions, as observed. In the upper portions of the channels, the water sources and legacy sediment conditions may differ and habitat conditions are somewhat better in reference areas. The upper reference channel has "Fair" biological conditions. "Good" or "Exceptional" conditions may not be attained because of ambient urban stressors, such as nutrients and toxicants in runoff and altered hydrology due to imperviousness in the watershed. Nutrient and hydrological stressors were not evaluated in this study, so we can only assume that they are in effect based on predominant land uses and imperviousness that are commonly associated with them.

Based on the sediment chemistry results, concentrations of contaminants (primarily PAHs and metals such as copper, lead, and zinc) are generally higher in the test sites compared to reference sites. These contaminants may contribute to community stress at multiple trophic levels including the benthic macroinvertebrates. An evaluation of the contaminant concentrations and their correlation with biological measures will be conducted in the primary report for Site 17. The mIBI and other metrics that show variability among sites (Total Taxa, EPT percent, Scraper percent, the MBI, and possibly density) should be included in the analysis.

The habitat conditions in the sites with the worst mIBI scores are noted as "scoured to the silt/clay layer" in the field notes (test SD58 and SD 59 and reference SD65 and 66; Tables 1 and 4). Scouring removes or disturbs stable substrate on which benthic macroinvertebrates are able to live, and the silt/clay hardpan is mostly uninhabitable. Whereas excessive fine sediments can be a problem with clogging interstitial spaces in some streams, the lack of fine sediments can also reduce habitat suitability (Brown and Brussock, 1991). Channels that are scoured down to an armored layer such as hardpan or bedrock do not provide suitable surface and interstitial area to support a healthy benthic assemblage. These conditions are common below the spillways of dams, where high flows and low sediment supply are common (Novotny, 1985). Scouring of the Pettibone Creek channel has led to degradation of habitat conditions. The habitat quality, as measured by the QHEI, was positively related to the percentage of fine particles in the sites, suggesting that one of the major habitat stressors is the high storm flows with channel scouring effects.

Channel morphology is related to stream power (Montgomery and Buffington, 1997; Nanson and Hicken, 1986). Where the channel is scoured, the banks are also eroded, indicating that the stream power is capable of moving greater loads than are available from upstream. Bank erosion provides one source of sediments to the powerful currents.

Restoration activity in the North Branch of Pettibone Creek could include removal of contaminated substrates and replacement with clean substrate. While this would undoubtedly result in reduction in contaminants at the restoration sites, there are reasons to reconsider this solution. First, removal of contaminants alone is not likely to have a great effect towards restoring biological integrity because it is evident that physical habitat conditions are at least partially limiting biological potential. Second, substantial study and effort would be required to prevent further degradation of habitat conditions after channel disturbance for restoration. In the sediment-starved system, replaced substrate would need to be carefully planned by a channel morphologist and an ecologist so that all the considerations of erosive forces and habitat quality could be balanced. Replacement with armored substrate to prevent down-cutting and entrenchment may not improve habitat conditions for macroinvertebrates. In other words, this end-of-pipe environment is a harsh habitat that would be impractical to restore to natural conditions and restoration to morphologically stable stream conditions may not benefit the biological community. One relatively simple step that could be taken to improve habitat conditions and channel morphology would be to refrain from removing woody debris that falls into the stream channel and along the banks. Woody debris in the stream increases channel roughness, which in turn reduces flow velocity (Buffington and

Montgomery, 1999). The woody debris also increases habitat complexity and provides stable, inhabitable substrate for specialized macroinvertebrates, including serving as a nutritional source for some. In any case, the physical, chemical, biological, and political goals for restoration should be carefully coordinated and measures to gage eventual project success should be established as restoration activities are planned (Palmer et al., 2005, Palmer, 2008).

Conditions in the South Branch of Pettibone Creek could be considered a target for restoration because habitat and sediment chemistry conditions are somewhat better than in the North Branch. These conditions may be due to land uses in the South Branch watershed that are less industrial with less impervious surfaces compared to the watershed of the North Branch. Industrial uses are probably associated with contaminant concentrations and imperviousness can contribute to extreme flows conditions. The North Branch physical and sediment chemistry conditions may be restorable to conditions similar to the South Branch, resulting in incremental improvement of the biological conditions from generally "Poor" to generally "Fair". It should be noted that the overall goal should be at least "Good" in both channels of Pettibone Creek. "Good" conditions are attainable in the region, as seen in the samples collected by Illinois EPA (Table 6). However, the intensely urban setting of this basin is only comparable to one of the Illinois EPA samples (Pike Creek), in which the mIBI score was similar to those of Pettibone Creek.

5 References Cited

Bailey R.C., R.H. Norris, and T.B. Reynoldson. 2004. Bioassessment of Freshwater Ecosystems: Using the Reference Condition Approach. Dordrecht: Kluwer. 184pp.

Beasley, G. and P.E. Kneale. 2004. Assessment of heavy metal and PAH contamination of urban streambed sediments on macroinvertebrates. *Water. Air. & Soil Pollution* 4: 563-578.

Beketov, M.A., and M. Liess. 2008. An indicator for effects of organic toxicants on lotic invertebrate communities: independence of confounding environmental factors over an extensive river continuum. *Environmental Pollution* 156: 980-987.

Brown, A.V. and P.P. Brussock. 1991. Comparisons of benthic invertebrates between riffles and pools. *Hydrobiologia* 220(2): 99-108.

Buffington, J.M., Montgomery, D.R., 1999. Effects of hydraulic roughness on surface textures of gravel-bed rivers. *Water Resources Research* 35 (11), 3507–3521.

Clements, W.H. 2004. Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community responses. *Ecological Applications* 14:954–967.

Flotemersch, J.E., J.B. Stribling, and M.J. Paul. 2006. Concepts and Approaches for the Bioassessment of Non-Wadeable Streams and Rivers. EPA/600/R-06/127. U. S. EPA, Office of Research and Development, Cincinnati, OH.

Gray, L. 2004. Changes in water quality and macroinvertebrate communities resulting from urban stormflows in the Provo River, Utah, U.S.A. *Hydrobiologia* 518(1): 33-46.

Halliburton NUS. 1993. Site Inspection Report for Pettibone Creek, Boat Basin and Harbor Areas Naval Training Center Great Lakes, Illinois. June.

Heatherly, T., M. R. Whiles, T. V. Royer, and M. B. David. 2007. Relationships between water quality, habitat quality, and macroinvertebrate assemblages in Illinois streams. *Journal of Environmental Quality* 36:1653–1660.

Illinois Environmental Protection Agency (Illinois EPA). 2011. Standard Operating Procedure for Calculation of the Macroinvertebrate Index of Biotic Integrity (mIBI); Document Control Number 170. IEPA Surface Water Section, 1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794.

Illinois Environmental Protection Agency (Illinois EPA). 1995. CERCLA Expanded Site Inspection Report. December.

Lammert, M. and J.D. Allan. 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. *Environmental Management* 23: 257–70

Merritt, R.W., K.W. Cummins, and M.B. Berg. 2008. *An Introduction to the Aquatic Insects of North America*. 4th edition. Kendall Hunt, Dubuque, Iowa.

Montgomery, D. R., and J. M. Buffington. 1997. Channel reach morphology in mountain drainage basins. *Geological Society of America Bulletin* 109: 596–611.

Nanson, G.C. and E.J. Hicken. 1986. A statistical analysis of bank erosion and channel migration in western Canada. *Geological Society of America Bulletin* 97(4): 497-504.

Novotny, J. 1985. Effects of a Kentucky flood-control reservoir on macroinvertebrates in the tailwater. *Hydrobiologia* 126(2): 143-153.

Ohio Environmental Protection Agency. 2006. Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (QHEI). OHIO EPA Technical Bulletin EAS/2006-06-1.

Palmer, M. A., E. S. Bernhardt, et al. 2005. Standards for ecologically successful river restoration. *Journal of Applied Ecology* 42(2): 208-217.

Palmer, M.A. 2008. Reforming watershed restoration: Science in need of application and applications in need of science. *Estuaries and Coasts* 32:1–17

Rogers, C.T., D.J. Brabander, M.T. Barbour, and H.F. Hemond. 2002, Use of physical, chemical, and biological indices to assess impacts of contaminants and physical habitat alteration in urban streams: *Environmental Toxicology and Chemistry* 21(6): 1156–1167.

Rogers, Golden, & Halpern and BCM Eastern Inc. 1986. Initial Assessment Study, Naval Complex Great Lakes, Illinois. March.

Schmidt, T.S., D.J. Soucek, and D.S. Cherry. 2002. Integrative assessment of benthic macroinvertebrate community impairment from metal-contaminated waters in tributaries of the upper Powell River, Virginia, USA. *Environmental Toxicology and Chemistry* 21: 2233–2241.

Smith A.J., R.W. Bode and G.S. Kleppel. 2007. A nutrient biotic index (NBI) for use with benthic macroinvertebrate communities. *Ecological Indicators* 7: 371–386.

Stribling, J.B., B.K. Jessup, and D.L. Feldman. 2008. Precision of benthic macroinvertebrate indicators of stream condition in Montana. *Journal of the North American Benthological Society* 27(1): 58–67.

Stribling, J. B., S.R. Moulton II, and G.T. Lester. 2003. Determining the quality of taxonomic data. *Journal of the North American Benthological Society* 22(4): 621-631.

Tetra Tech, Inc. 1999. The Ecological Data Application System (EDAS). Electronic database. Microsoft Access database. (*For more information, call Mr. Erik Leppo at 410-356-8993*).

Tetra Tech NUS, Inc. 2003a. Watershed Contaminated Source Document - Site 17 – Pettibone Creek and Boat Basin, Naval Training Center Great Lakes, Great Lakes Illinois. September.

TetraTech NUS, Inc. 2003b. Remedial Investigation and Risk Assessment Report - Site 17 – Pettibone Creek and Boat Basin, Naval Training Center Great Lakes, Great Lakes Illinois. September.

Tetra Tech NUS, Inc. 2005. Feasibility Study for Site 17 – Pettibone Creek and Boat Basin, Naval Training Center Great Lakes, Great Lakes, Illinois. August.

Tetra Tech. 2007. Illinois Benthic Macroinvertebrate Collection Method Comparison and Stream Condition Index Revision. Prepared for Illinois Environmental Protection Agency. Prepared by Tetra Tech, Owings Mills, MD.

Tetra Tech. 2012. Draft Tier II Sampling And Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) March 2012; Sediment Characterization Investigation in Support of the Feasibility Study for Site 17 – Pettibone Creek Naval Station; Great Lakes Great Lakes, Illinois. Prepared for: Naval Facilities Engineering Command Midwest, 201 Decatur Avenue, Building 1A Great Lakes, Illinois 60088. Prepared by: Tetra Tech, 234 Mall Boulevard, Suite 260 King of Prussia, Pennsylvania 19406.

U.S. Navy. 2010. Implementation of an Integrated Natural Resources Management Plan at Naval Training Center, Great Lakes, Illinois. Naval Facilities Engineering Command. Southern Division. November.

Waters, T.F. 1995. *Sediment in Streams- Sources, Biological Effects and Control*. American Fisheries Society Monograph 7. American Fisheries Society, Bethesda, MD.

Wood, P.J., and P.D. Armitage. 1997. Biological effects of fine sediment in the lotic environment. *Environmental Management* 21(2): 203-217.

Appendix A

Field Data Sheets

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION	LOCATION				
PETTIBOUE CREEK	NAWAL STATE	on Great Lakes				
STATION# NTCITPCSD53		Latitude 42.31345				
PHOTO#	Longitude 087, {	Longitude つきつ、842フラ				
INVESTIGATORS CB. BR. KS						
FORM COMPLETED BY	DATE	REASON FOR SURVEY				
CB	03-28-2012					

FIELD DATA - PHYSICAL CHARACTERIZATION / WATER QUALITY

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	Local Water Erosion None Moderate Heavy Estimated Stream Widthm Estimated Stream Depth Rifflem Runm Poolm Runm Velocity M/sec Estimated Reach Length
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ☑ Trees ☐ Shrubs ☐ Gra dominant species present ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	sses Herbaceous
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent ☐ Rooted submergent ☐ Floating Algae ☐ Attached Algae dominant species present ☐ ☐ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	nant species present ☐ Rooted floating ☐ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Paper fiber Sand Cher_ Looking at stones which are not deeply embedded, are the undersides black in color? Yes No
WATER QUALITY	Temperature_11.40 ° C Specific Conductance_1.29 as/ca Dissolved Oxygen_11.61 as/t pH _7.98 Turbidity_13.0 NTV WQ Instrument Used_110838A	Water Odors Normal/None Sewage Chemical Fishy Other Water Surface Oils Slick Sheen Globs Flecks None Other Turbidity (if not measured) Clear Slightly turbid Turbid Opaque Water color Other

FIELD DATA - BENTHIC MACROINVERTEBRATE SAMPLE

STREAM NAME PETTIBONE CREEK	STATION # NTC17 865053				
Reference or test?					
FORM COMPLETED BY	DATE 63-28-2012	REASON FOR SURVEY			
C.B.	TIME 				

HABITAT TYPES	Indicate the percentage of each habitat type present							
111/23	☑ Cobble 45 % ☑ Snags 15 % UNDERGYT. 15							
	□ Vegetated Banks%							
	☐ Submerged Macrophytes% ☐ Other (♣৩৩ ७ № ₳७১) 1 ☐%							
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat							
	Indicate the number of jabs/kicks taken in each habitat type.							
	□ Cobble □ Snags							
	□ Vegetated Banks □ Sand							
	□ Submerged Macrophytes □ Other ()							
GENERAL COMMENTS	WIDTH 4 10 FEET -7 10 BOTTOM, 10 BANK.							
	BOTTOM- BANK!							
	COARSE-THE IIII SNAGS-111							
	FINE - 111 ROOTWAS-11							
	DETRITUS UNDERCUT - 111							
	REACH IS DOWNSTREAM OF CULVERT.							

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

		. <u> </u>
		Section of the sectio
OHEI	Sco	ne: 64
		· · · · · · · · · · · · · · · · · · ·
		Transfer of the Contract of th

Stream & Location:	PETTIBLE CAEK		RM:	_ Date: 0 3/ 28/ 08201
NTE17 PESO53		Scorers Full Name & Af	36.46 64 65	
River Code:	STORET #:_	Let/Long:		Carlos particular El
1] SUBSTRATE Check C	ALYTwo exibetes to TYPE BOX I % or ricke every type present		Chack ONE (Or 2 & av	
DEST TYPES	CLERFILE OTHER TY		GIN 🛨	QUALITY
BLOR/SLABS [10]		(F) Uranta (11	□HEAVY[3] □MODERATE[-1] Sidebute
□ ☑ coestE (s) □		· · · DWETLÀ	NOS PI	MORNAL [9]
☐☐ GRAVEL[7]		LDI DSAHOS		PREED 13.5
□ □ BEDROCK [5]	(Score)	Und substantes sprom Unit MA	TPI 27 WAL	MODERATE I- II
NUMBER OF BESTIY Comments	PES: 4 or more [7] skado 1 3 or bess [8]	U SHALE	F1	HORMALIO 20
COMMINGAL		Ocorr.	MES (2)	
2] INSTREAM COVER quality; 3-Highest quality in a diameter big that is stable, is 1. UNDE ROUT BANKS; 0. OVERHANGING VEG 2. SHALLOWS (IN SLOT 0. ROOTMATS; 1) Comments	moderate of greater amounts to self developed societies in deep [1] POOLS ETATION [1] ROOTW	ADS[1] _O_AQUATIC MA	fact water, large Ch. furction of pools	AMOUNT sck ONE (Or 2 & average) EXTENSIVE >79% [11] GOOGRATE 28-79% [7] PARSE 5-425% [3] EARLY ABSENT <9% [1] Cover Maximum 20
31 CHANNEL MORPHO	LOGY Check ONE in each o	depry (0/24 mesops)		
SINUOSITY DEVE	LOPMENT CHANN	ELIZATION STAB		
□ HIGH (N) □ EX	CELLENT [7] HONE [8]		[3] ESUATE [2]	
□LOW[7] □ FAI	R [J) □ RECOVER	we`(i) □ Low		Conner Committee
Onche [1] Po		NHO RECOVERY[1]		Maximum 6
				<u> </u>
4) BANK EROSION AN	<i>ID RIPARIAN ZONE</i> Cim RIPARIAN WIDTH	A ONE in each category for EAC! FLOOD PLAIR		(mage)
		D DPOREST, SWANP [7]	ΔÖco	SERVATION TELAGE [1]
☑ MODERATE [2]	□ □ MODERATE 10-50m [3] □ □ MARROW 5-10m [2]	SHRUB OR OLD FIELD	INVESTIGATION OF THE PARTY	IAN OR MOUSTRIAL (III)
HEAVY / SEVERE [1]	O O VERY MARROW < 5m [1	I C OFENCED PASTURE [1]	Indicate pro	edisminant land (and a)
Comments	T C WAR D	O OPEN PASTURE, ROW	CROP (0) paul 100m	2000 45
			······································	<u> </u>
5) POOL / GLIDE AND MAXIMUM DEPTH	RIFFLE / RUN QUALITY CHANNEL WIDTH	CURRENT VE	LOCITY IR	ecreation Potential
Creck ONE (ONLY)	Check ONE (Or 2 & everage	(f) ChackAL the	Lappiy	Primary Contact
	POOL WOTH > REFELE WIDT POOL WIDTH = REFELE WIDT	MIN O VERY PASTING OF		econdary Contact
0.4-00/m 2	POOL MOTH > REFLE MOT		ENTERMITTENT FZI	
□<0.2m [0]		indicate to reach - p	ods and riffee.	amin g
Comments				Marine L. J.
Indicate for function of riffle-ob ligate as		nust be large enough to s ack CNE (Or 2 & average)	support a population	NO REFLE[moste-8]
REFLE DEPTH	RUN DEPTH I	RIFFLE / RUN SUBSTRAT		
BEST AREAS > 10cm [2]	MAXIMUM > 50cm [7]	STABLE (e.g., Cobble, Boulder) KOD. STABLE (e.g., Lurge Grav		
T BEST AREAS < 5cm		INSTABLE (e.g., Fire Gravel, S.	esta Mileoni	BATEIN RETOL
[metric=0] Comments			Cent	Harris 2
6 GRADIENT, In A.	YM) DVERYLOW-LOW		7.57.	
DRAINAGE AREA)	
	mP) □ HIGH-VERTHGH	re-g XRUN:	(D) WRIFFLE:	10) 10
EPA 4520				Contract Con

KORIGIN OFTERMINED FROM ILLINOIS GEOLOGICAL SURVEY, WAUKEGAN QUANTANCLE AND SITE OBSERVATIONS.

Reviewed By: Page___of_

PEBBLE COUNT FIELD DATA SHEET

ITE ID:	TEPCSD	53		DA	TE: 20	120	3-	22	<u>∫</u> (YY)	Y-MM	-DD)	0 .4.
						Gr	abs		·····			MB= Med.
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10	Bould
1	G-	29	33	50	57	50	VC	61	40	55	C	
2,	RN	SB	21	43	63	21	75	28	21	28	10	SB: Smull
3	P	12	MB	MC	40	45	33	62	24	47	\subset	Bould
4	RN	VF	MC	MC	50	VC	MC	10	VC	VC	M	SmC = Sono
5	6-	31	18	30	19	53	VC	100	13	22	C	
6	K	Μ	60	MB	90	53	(10)	45	30	920	VF	Cobbu
7	RN	22	QB	Smc	30	60	34	22	24	5m0	F	11-Laye
8	AF	Smo	500	SmC	33	55	100	12	80	43	5	LC-Large Cobbl
9	RN	45	17	35	500	5m6		MC	MC	VC	VC	***
10	BN .	Ġ,	MO	40	MC	45	40	60	45	120		MC = Med.

Abbreviation	s:
Silt/Clay	

Silt/Clay
Sand - Very Fine
Sand - Fine
Sand - Medium
Hardpan Clay Bedrock - BR

= SC = VF = F = M = HP

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder

= C = VC = SB = MB = LB

Feature Types:
Riffle = RF
Run = RN
Glide = G
Pool Riffle Run Glide Pool

After recording transects above transcribe data into table below. Usually done by data entry person.

Size Clas		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062	W							
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25				<u> </u>				
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravel	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16	,							7
	Coarse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96			·					
		96-128								
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME LOCATION						
PETTIBONE CREEK	NAVAL STAT	TON GREAT LANGES				
STATION# NTC17 PC5054	Latitude 42.31257					
PHOTO#	Longitude 087, 94241					
INVESTIGATORS CB, BR. KS						
FORM COMPLETED BY	DATE	REASON FOR SURVEY				
CB	03-28-2012					

FIELD DATA - PHYSICAL CHARACTERIZATION / WATER QUALITY

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	Local Water Erosion None Moderate Heavy Estimated Stream Width 3.1 m Estimated Stream Depth Riffle 6.10 m Run 0.25 m Pool 0.45 m Velocity 1 2 5 m/sec
	Canopy Cover ☐ Partly open ☑ Partly shaded ☐ Shaded High Water Mark <u>1.5</u> m	Estimated Reach Length 300 m F7 Channelized Yes No Dam Present Yes No
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ☑ Trees ☐ Shrubs ☐ Gra dominant species present ☐ DECIMBUS	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent ☐ Rooted submergent ☐ Floating Algae ☐ Attached Algae ☐ Hortion of the reach with vegetative cover ☐ ☐	□ Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors ☑ Normal □ Sewage □ Petroleum □ Chemical □ Anaerobic □ None □ Other Oils ☑ Absent □ Slight □ Moderate □ Profuse	Deposits □ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No
WATER QUALITY	Temperature_12.33 ° C Specific Conductance_1.47 ms/cm Dissolved Oxygen _12.68 ms/L pH _7.44 Turbidity _14.2 NTU WQ Instrument Used _HORIBA	Water Odors Normal/None

FIELD DATA - BENTHIC MACROINVERTEBRATE SAMPLE

STREAM NAME PETTABONE CREEK	STATION# NTC 17 PCSD 54		
Reference or test?			
FORM COMPLETED BY	DATE 03-28-2017 TIME 1430	REASON FOR SURVEY	

HABITAT TYPES	Indicate the percentage of each habitat type present			
11120	© Cobble 45 % © Snags 15 % ROOTWAD - 25			
	□ Vegetated Banks%			
	☐ Submerged Macrophytes% ☐ Other (DETRITUS)5%			
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat			
,	Indicate the number of jabs/kicks taken in each habitat type.			
	□ Cobble □ Snags			
	□ Vegetated Banks □ Sand			
	☐ Submerged Macrophytes ☐ Other ()			
GENERAL	WIDTH < 10 FT - 7 10 BOTTON, 10 BAUK			
COMMENTS	BOTTOM: DANK!			
**	COARSE-174 IIII SNAG-111			
	FINE- 11 ROOTWAD- THAT DETRITUS-1			
	READONABLY SHACLOW THROUGHOUT REACH.			
	$\dot{\ell}$			

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

		- Administration of	and the second
D.C.L. ALSO LESS 11	Strain Street Land		
A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	The same way	الاساسانة فيستس	from 1
		70 - 31	
MES SAME			200
			and the same of
and the second second second	化氯化甲基甲基 化二氯甲基	The second second	in the second second

Stream & Location: PETTIBONE CREEK		Deter 02/28/08/2017
	s Full Name & Affiliation:	
River Code: STORET #:	Let/Long: 18	· Constant
1] SUBSTRATE Check ONLYTwo substates TYPE BOXES. astronate % or riche every type present	Ond ONE (0-2	
BEST TYPES POOL RIFFLE OTHER TYPES POOL	REFLE _ CRIGIN *	QUALITY
BLOR/SLABS [10] HARDPAN [1] BOULDER [8] DETRITUS [3]	Trushi	□HERVY[3] □HODERATE[-1] SIBIFIE
COSSIE IS COSSIE IS	- WETLANDS PI	MINORMALIO C
Gewariu T General -	HARCPAN (Q)	- Prestol 14.5
SAND [6] ARTIFICIAL [6] (Score nearly indicates		EKTEMBIVE [2]
NUMBER OF BESTTYPES: Dis or more PI skulge from point	Heorices) DIACUSTURNE [8]	*3 MORMAL [8] 20
Comments S 3 or less [4]	☐ SHALE [-1] ☐ COAL FINES [-2]	⊠ HCHE[q
Z] INSTREAM COVER Indicate presence 0 to 3: 8-Absent 5-Very quality; 2-Moderate errounts, but not of the quality; 3-Highest quality; noderate or greater amounts in g., very the diameter by that is statte, well developed rootwad in deep / last water 0 UNDERCUT BANKS [1] PROCES > 76cm [2] NOOTWADS [1] ROOTWADS [1] SHALLOWS (IN SLOWWATER) [1] BOULDERS [1] Comments	ge bruides in deep or feet weter, large or deep, well-defined, functional pools.	AMOUNT Creck ONE (Or 2 & awaype) EXTENSIVE >FFK [11] MODERATE 25-75% [7] SPARSE 5-25% [3] HEARLY ABSENT <5% [1] Cover Maximum 20
3] CHANNEL MORPHOLOGY Check ONE in each category (Or		
SINUOSITY DEVELOPMENT CHANNELIZATIO		
□ HIGH (F) □ EXCELLENT [7] □ MONE (F) □ MODERATE DI □ GOCO (SI □ RECOVERED (4)	☐ MIGH [3]	
☐ LOW [2] ☐ FAIR [3] ☐ RECOVERING [3]	□ row[ii]	Countril (Common)
□ NONE [1] □ POOR [1] □ RECENT OR NO REC		Alexander 7
		*\~\
	FLOOD PLAIN QUALITY PREST, SWAMP [3] PRUB OR OLD FIELD [2] ESIDENTIAL, PARK, NEW RIELD [1] ENCED PASTURE [1] Index	CONSERVATION TELLAGE [1] URBAN OR INDUSTRIAL [6]
6.7~im [4]	CURRENT VELOCITY Chack ALL that apply TORRENTIAL [-1] SLOW [1] VERY FAST [1] STERSTITIAL [-1] FAST [1] STERMITTENT [-2] MODERATE [1] EDDIES [1] Indicate for reach - pools and riffes.	Recreation Potential Primary Contact Secondary Contact (data manufacture) Proof Current Maximum 6
Comments		7.5
REFLE DEPTH RUN DEPTH RIFFLE BEST AREAS > 10cm [7] MAXIMUM > 50cm [7] STABLE (4 BEST AREAS \$ 10cm [7] MAXIMUM < 50cm [7] MOD. STA	SLE (e.g., Large Gravel) [1]	<u> </u>
6] GRADIENT (\O.O. Mml) VERYLOW-LOW (2-4)	222	.722
DRAINAGE AREA MODERATE (6-18) MODERATE (6-18) MIGH - VERT HECH (19-9)	%POOL:(30) %GLID %RUN: (5) %RIFFL	
E9A4520		OUTERS

*-ONIGIN DETERMINED FROM ILLINOIS GEOLOGICAL SURVEY, WAVEGAN QUADRANGLE.
AND SITE OBSERVATIONS.

Reviewed By: Page___of___

PEBBLE	COUNT	FIELD	DATA	SHEET

3 MAR 29

SITE ID:	NTCITPOS	DA	TE: 20	12-5	<u> 28</u> -	28	(YY)	Y-MM	-DD)				
			Grabs										
Transect	Feature Type	1	2	3	4	5	- 6	7	8	9	10		
1	G	6	8	13	10	36	12	14	VC	7	VC		
2	P	F	Μ	21	75	28	100	MC	HP	HP	HP		
3	RF	42	50	28	45	55	47	30	4	33	43		
4	RF	15	44	50	47	22	63	57	29	50	44		
5	RN	1/6	25	13	43	19	80	36	71	25	C		
6	· 61	VC	15	43	43	52	55	14	50	55	30		
7	In Q	VC	в	45	20	23	20	60	60	48	17		
8	RN	72	70	46	60	38	55	43	33	23	33		
9	RF	THP	HP	SC	MC	LC	81	48	55	79	75		
10	P	HP	100	M	12	32	MÓ	48	14	88	81		

MC= Med Cobble LC = Large Cobble

Abbreviations: Silt/Clay Sand – Very Fine Sand – Fine Sand – Medium Hardpan Clay – Bedrock – BR

= SC = VF = F = M = HP = RP

Sand - Coarse Sand - Very Small Boulder = C = VC = SB = MB = LB Medium Large Boulder

Feature Types: = RF = RN = G Riffle Run Glide Pool

Size Class		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062								
Sand	Very Fine	0.062-0.125								
	fine	0.125-0.25								
	Medium.	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravei	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24					,			
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION			
PETTZBONE CREEK	NAVAL STATE	IN GREAT LAKES		
STATION# NTC17 PC5058	Latitude 42.51	170		
PHOTO#	Longitude 087,	8430 8		
INVESTIGATORS CB. BR. KS				
FORM COMPLETED BY	DATE	REASON FOR SURVEY		
- СВ	03-24-2012			

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	
	High Water Mark 1.3 mm m DIFFICULT TO DETERMINE OUE TO EASSON.	Channelized ♥Yes □ No Dam Present □ Yes √No
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ☑ Trees □ Shrubs □ Gra dominant species present □ DE CIDU 00	asses Herbaceous
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent □ Rooted submergent □ Floating Algae □ Attached Algae dominant species present □ □ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷ ▷	nant species present □ Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits ☐ Sludge ☐ Sawdust ☐ Paper fiber ☐ Sand ☐ Relict shells ☐ Other Looking at stones which are not deeply embedded, are the undersides black in color? ☐ Yes ☐ No
WATER QUALITY	Temperature_10.64_0 C Specific Conductance_2.24 mskm Dissolved Oxygen_11.36_314 pH_7.78_ Turbidity_7.5_NTV WQ Instrument Used_HJR36A	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Sheen Globs Flecks None Other Turbidity (if not measured) Clear Slightly turbid Turbid Opaque Water color Other

STREAM NAME PETTIBONE CHEEK	STATION# NTC178CSD58				
Reference or test?					
FORM COMPLETED BY	DATE 03-24-2012 TIME 0815	REASON FOR SURVEY			

HABITAT TYPES	Indicate the percentage of each habitat type present
TIPES	☑ Cobble 30 % ☑ Snags 25 % ROTHER 15%
	□ Vegetated Banks%
	□ Submerged Macrophytes% □ Other(DETRIFUS)%
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	□ Submerged Macrophytes □ Other ()
GENERAL	WIDTH < 10 FT -7 10 BOTTOM , 10 BANK
COMMENTS	BOTTOM: BANK: CORRSE-IN : BNAG-ITH
	CORRSE-INLI GNAG-ITH
	FINE-THE ROOTHAD-111
	REACH LOCATED IN NARROW V-SHAPED VALLEY WITH HEAVILY
	ERADED BANKS, AREAS OF REACH ARE SCOURED DOWN TO SILT-CLAY
	LAYER.

-	** · **		anicomies.	-	-
A comment	Server.	0.00000	10000	24	
	-0.00	460		****	
		337			* *
America .		and the contribution	ndisdelana.	a da	

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

A CONTRACTOR OF THE PARTY OF TH	and the second	
Taran in the desired to the control of the control		į
QHEI Score: 📗	4 5	
QHELScore: II -		
	Tarifford .	į

Stream & Location:			RM:	Date: 03/21/08/201
NT617 (C5058	Scorers Full	Name & Affiliation:	CARPOLA	
River Code: 51	ORET #: LA!	/Long.:	<i>/</i> 8 .	California of the California o
1] SUBSTRATE Check ONLYTwo substitute astronomy % or note every	the TYPE BOXES		NE (Or 2 & averag	
BEST TYPES POOL BEFFLE	OTHER TYPES POOL RIFFL	. ORIGIN *	er en er annet en er en er er er en ander	QUALITY
				EAVY[2]
	Detaunals	DTILLS [1]		COURATE I-1) SIDERIES
	☐ang ta	☐ WETLANDS (D) ☐ HAROPAN (G)		CHINALIA 152
☑ □ SAHO[9	TARTIFICIAL (P)	D SANOSTONE [0]	ZODEA DE	KTENSIVE (2)
BEDROCK PI	(Score natural substates; igno nore [2] skulge from point-source	■ [PRIFITATE D]		ODERATE -1] Massimum ORSMAL 0] 20
NUMBER OF BEST TYPES: 4 or a Comments		DEHALE (-1)	o.	CHELE 20
		COAL FINES [2]	**	
7. INSTREAM COVER Indicate present	a 0 to 3: 0-Absent 1-Very email a	mante at il mare comma	d manife	AMOUNT
Z) INSTREAM COVER Indicate present quality; 2-Modern quality; 3-Highest quality is moderate or great	ata amounts, but not of highest q. (er arrounts la g., very large boul	ality or in small amounts of	f highest term Check	ONE (Or 2 & average)
diameter by that is state, wall developed as UNDERCUT BANKS [1]	Amagai uanpinasa mama, orone)	r mosconing income i	COOK. EXI	SISIVE >75% [11]
O OVERHANGING VEGETATION IT	POCKS>76mm [2] 1	OXBOWS, BACKWATES AQUATIC MACROPHYT		ERATE 25-79% [7] RBE 5-425% [3]
2 SHALLOWS (IN SLOW WATER) [1]	BOULDERS (1) 2	LOGS OR WOODY DEB		RLY ABSENT <5% [1]
O ROOTMATS (I)				Cover (
Commenta				Maximum 8
31 CHANNEL MORPHOLOGY Chack			***************************************	
SINUOSITY DEVELOPMENT	CHANNELIZATION	STABILITY		
	ONE B)	☐ HIGH IN		
□ MODERATE PI □ GOOD [S]	D RECOVERED (4	MODERATE [2]		
	☑ RECOVERING [3] ☑ RECENT OR NO RECOVERY	_ □ rowlu		Chancel Committee
Comments	J NE CENT ON NO RECOVERY			Aleximum -7
				*\
4 BANK EROSION AND RIPARIAN	ZONE Chack ONE in each cate	gory for EACH BANK(Or	2 per benk & aven	
RIPARI	NI WIDTH FLO	DOD PLAIN QUALIT	Υ	
L B ERUSIUM ☐ ☐ WIDE>SI			□ □ coняв	RVATION TILLAGE [1]
□ □ MODERATE [2] □ □ MARROW	540m (21	R OLD FIELD [2] TML, PARK, NEW FIELD [OR HOUSTRIAL (0)
T HEAVY / SEVERE (1) - VERY HA	SOM < \$+[1] [FENCED	PASTURE[1]	Indicate predor	remark land used at
☐ ☐ NONE [8]	UUGPENPA	STURE, ROWCROP [4]	past 100m spa	thin Alpeton
				Marrie 4
POOL / GLIDE AND RIFFLE / RU	N QUALITY			
		RRENT VELOCITY	Recr	ection Potential
		Peach ALL Englapply		mary Contact
	REFLEMONIC TORRE	maliaj ⊡skowiaj ustijaj ⊡skressim		ondary Contact
	PARTE WOTH PI TERST	— Оители пт	ewi ka 🖳	
0.2-(1.6m[1] < 0.2m (0)	Ø #ooer	ATE (1) DEDONES (1)		2001 (FT)
Comments			*** *********************************	Correct 6
		**************	~~~~	
Indicate for functional riffles; B of riffle-obligate species:	est areas must be large e Check CNE (Or 2 & a	nough to support a	population	□HORFFLE[metric=6]
RIFFLE DEPTH RUN DE	PTH RIFFLE/RUNS	SUBSTRATE RIFF	E / RUN EMP	
BEST AREAS > 100m (2) [] MAXBRIM >	Storm [2] T STARLE Inc. Cats	Ma. Roudder1121	□ NOHE [2]	
□ BEST AREAS \$40cm [1] □ MAXIMUM < 7 BEST AREAS < 5cm	Stem [1] WHOO STABLE (ag	Large Gravel) [1]	□row m	TOTAL RESERVE
[matric=0]	DUNSTABLE (a.g. R		Ø#COERA □EXTERS	re Eq Maximum 2
Comments				· ' 'Association' ()
B) GRADIENT (10.0 mm) - VERY	LOW-LOW[2-4	%POOL:(28)	AGUDE (50	
DRAINAGE AREA IZ MODE	RATE (4-10)			<
	• МЕНТ ИСИПО-Ф	XRUN: (ID)X	RIFFLE:(20	
3 46 20			***************************************	06/16/6

*- ORIGIN DETERNITUED FROM ILLINOIS GEOLOGICAL SURVEY, WAVEGEAN QUADRANCE AND SITE OBSERVATIONS.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: N	TC/7PC	5/) S	59	DA	TE: 20	<u>D - C</u>	23-	29	(YY)	Y-MM	-DD)		
			Grabs										
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10		
1	RF	SC	12	21	16	38	15	16	7	NC	Μ		
2	P	50	VC	15	50	SC	SC	50	MC	28	17		
3	P	H	HP	HP	HP	HP	50	VC	SC	50	VF		
4	RF	2/	48	32	Sct	7	35	22	60	90	10		
5	P	SC	20	30	14	28	15	43	55	34	65		
6	P	M	24	35	13	5	C	48	140	HP	146		
7	RF	50	48	35	48	10	90	100	62	30	12		
8	RF	Ø	15	VC	48	No	28	60	24	40	33		
9	82	Q5	enten. V.	25	32	300	22	31	22	20	50		
10	(3)	8	5	9	Ø	18	හි	18	15	F	MC		

COBBLE

MC: Med. Cobble

Abbreviations: Silt/Clay Sand – Very Fine Sand – Fine Sand – Medium Hardpan Clay – Bedrock – BR

= SC = VF = F = M = HP = BR

Sand - Coarse Sand - Very Small Boulder Medium = C = VC = SB = MB = LB Large Boulder

Feature Types: Riffie Run Glide Pool = RF = RN = G

Size Clas	•	Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062								
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25			- 1, 					
	Medium	0.25-0.50								
	Coarse	0.50-1.0			·					
	Very Coarse	1.0-2.0								
Gravel	Very Fine	2-4								
	Fine	4-6				1				
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096	,							
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION	LOCATION				
PETTIBONE CREEK	NAVAL STATE	NAVAL STATION GREAT LAKES				
STATION# NTC17 PC5059		Latitude 42,31096				
PHOTO#	Longitude 087.8	Longitude 687.84235				
INVESTIGATORS CB, BA, KS						
FORM COMPLETED BY DATE REASON FOR SURVEY						
C	03-28-2012					

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse □ Forest □ Commercial □ Field/Pasture □ Industrial □ Agricultural □ Other AFLITAM BASE Local Watershed NPS Pollution □ No evidence ☑ Some potential sources □ Obvious sources Canopy Cover □ Partly open ☑ Partly shaded High Water Mark □ 7 m	Estimated Stream Depth Riffle 0.10 m Run_m Pool 0.50 m Velocity 1 m 45 m/sec
	- -	Dam Present □ Yes
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the doming Trees Shrubs Grad dominant species present DECIDUAUS	
AQUATIC VEGETATION	Indicate the dominant type and record the domi ☐ Rooted emergent ☐ Rooted submergent ☐ Floating Algae ☐ Attached Algae dominant species present ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	□ Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits □ Sludge □ Sawdust □ Paper fiber ☑ Sand □ Relict shells □ Other Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑ No
WATER QUALITY	Temperature 14,23 ° C Specific Conductance 1.65 ms/cm Dissolved Oxygen 15 10 ms/cm pH 8,00 Turbidity 71 NTV WQ Instrument Used HORIGA	Water Odors Normal/None

STREAM NAME PETTIBONE CREEK	STATION # NTC 17 PC 5D 59		
Reference or test?			
FORM COMPLETED BY	DATE 03-28-2012 TIME 1315	REASON FOR SURVEY	

LIADITAT	
HABITAT TYPES	Indicate the percentage of each habitat type present
11123	☑ Cobble 30 % ☑ Snags 20 % R007LAD - 15
	□ Vegetated Banks%
	□ Submerged Macrophytes% □ Other(DETRITUS)%
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	D Cabble
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	□ Submerged Macrophytes □ Other ()
GENERAL	WIDTH GREATER THAN 10 FT -7 12 BOTTOM, 8 BANK
COMMENTS	BOT70M: BANK:
*	COARSE-THLI SNAGS-1111 FINE-TH RONTWADS-111
	FINE- MY ROOTUADS. [1]
	DETAITUS-11
	HIGH LEVEL OF BANK EROSION, PORTION OF REACH SCOURED TO HARDPAN.

J. State of St.			-			
200	diame,	Service of	-	**		
	8 1		1	904	8	
				4		

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

		A STATE OF THE PARTY OF THE PAR
		AND PRODUCTION OF THE PARTY OF
f 11-21 f	SCORO	
W. F. S.	WWW.	
		Santa Caraca Car
		Constitute Carries and Council State

Stream & Location:	ETTIBONE CREEK		RM:	Date: 03/28/0820
NTCITPCSD 5		Scorers Full Name & Affiliatio	Section and the section of the secti	
River Code: -	- STORET #:	Lat/Long:		
BEST TYPES PO BLOR /SLASS [10] BOULDER BJ GRAVEL [7] BOULDER BJ GRAVEL [7] BANG [6] BEDROCK [6] NUMBER OF BEST TYPE Comments 2] INSTREAM COVER	DEFRITUAL SCORE NATIFICIAL SCORE NATIFICA NATIFICIAL SCORE NATIFICIAL SCORE NATIFICA	Checome Checom	SILT OF ORDER	QUALITY EAVY[4] GOERATE [-1] GOERATE [-1] KTENSINE [4] GOERATE [-1] GOERATE [-1] GORMAL [0] GORMAL
dument by the is static, we dimented by the is static, we comments of the control	Indicate or general arrounts is in developed sociated in deep 1 If	4. very large boulders in deep or fast we fund to the fact we fire or deep, well-defred, funds > 70cm [2] ONDOWS, BACKWE ADS [1] AQUATIC MACROPIERS [1] LOGS OR WOODY E	iter, terge Creck in all pools. PEXTI CTERS [1] MOD HYTES [1] SPA	ONE (Or 2 & average) ENSIVE 979% [11] ERATE 25-79% [7] RSE 5-455% [3] RLY ABSENT 45% [1] Cover Maximum 20
SINUOSITY DEVEL	ELLENT [7] HOHE [8] DO [8] RECOVERS	ELIZATION STABILITY HIGH [3] ED [4] MODERATE		Abaimin 5
EROSION MONE/LITTLE[3] MODERATE[2] HEAVY/SEVERE[1]	D RIPARIAN ZONE Chic RIPARIAN WIDTH WIDE> 50m [4] MODERATE 10-50m [3] HARROW 5-10m [2] VERY HARROW < 5m [1]	* ONE in such catagory for EACH BANK FLOOD PLAIN QUA CONTROL OF CONTROL OF CONTROL C	LOTY CONSE	RVATION TELLAGE [1] OR INDUSTRIAL [0] /CONSTRUCTION [0] riment land tame in Maximum 3
MAXIMUM DEPTH Check ONE (CNLY) > tim [0]	RIFFLE / RUN QUALITY CHANNEL WIDTH Check ONE (Or 2 & averag POOL WIDTH > RIFFLE WIDT POOL WIDTH > RIFFLE WIDT POOL WIDTH > RIFFLE WIDT	CURRENT VELOCIT (a) Check ALL flys apply (b) TORRENTIAL [4] (2 SLOW] (c) TORRENTIAL [4] (2 SLOW] (d) VERY FAST [1] INTERS	Pri Soci TITIAL [-1] TITIBHT [-2]	eation Potential mary Contact ondary Contact c
of riffis-obligate spi REFFLE DEPTH □ BEST AREAS > 19cm 21	Ocies: Ch RUN DEPTH F MAXMUM > 50cm [7] 1 G MAXMUM < 50cm [7] 1	nust be large enough to suppo eck ONE (Or 2 & average) RIFFLE / RUN SUBSTRATE RI TASLE (e.g., Cobble, Soulder) [2] IOO. STABLE (e.g., Large Gravel) [1] INSTABLE (e.g., Fire Gravel, Sand, [9]	FFLE / RUN EME	
6] GRADIENT (10,0 N DRAINAGE AREA EPA 4520	MP) VERY LOW-LOW (; MODERATE (8-10) MP) HIGH - VERY HIGH () %GLIDE: 25)%RIFFLE: 10	

*- ORIGIN DETERMINED FROM ILLIHOIS G GOLDGICAL SURVEY, WANKEGAN QUADRANGLE AND SITE OBERNATIONS

Reviewed By:_____ Page of

PEBBLE COUNT FIELD DATA SHEET

SITE ID: N	EID: NTC178CSD 59 DATE: 2012-0 3-2 9 (YYYY-MM-DD)					-DD)					
			Grabs								
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RF	43	42	17	34	MC	MC	MC	5B	LC	-
2	G	13	HP	24	27	HP	HP	HP	HP	HP	HP
3	RN	ブ0	9	17	C	14	HP	HP.	HP	HP	HP
4	ŘF	22	75	150	22	17	43	48	41	35	26
5	RF	6	9	24	70	46	35	17	46	100	29
6	6	SO	23	Μ	32	33	21	C	C	Μ	100
7	Gr	VP	0	C	C	22	5	0	10	VF	VF
8	9	LB	100	80	VF	9	- Special Control of the Control of	6	Μ	Μ	HP
9	P	LB	SCA	5 CK	Μ	14	VF	Μ	Μ	M	M
10	P	SC	SC	17	VE	9	12	HP	HP	50	50

LB = LARGE BOULDE SC = Small Cobble (Toodeep to measure)

Abbreviations:

Silt/Clay
Sand - Very Fine
Sand - Fine
Sand - Medium
Hardpan Clay Bedrock - BR

= SC = VF = F = M = HP = BR

= C = VC = SB = MB Sand - Coarse Sand - Very Small Boulder Medium Large Boulder

Feature Types:
Riffle = RF
Run = RN
Glide = G
Pool P

Size Class		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total	Cumulative Total
									(for all features)	(for all sizes)
Silt/Clay		< 0.062								
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25								
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravei	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
	ŀ	24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION				
PETTIBONE CREEK	NAVAL STATS	W GREAT LAKES			
STATION# NTC17869060	Latitude 42.310				
PHOTO#	Longitude 087.8	Longitude 037.84132			
INVESTIGATORS CB, BR, KS	INVESTIGATORS CB, BR, KS				
FORM COMPLETED BY	DATE REASON FOR SURVEY				
- G	03-28-2012				

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	Local Water Erosion None Moderate Heavy Estimated Stream Width Main Main Main Main Main Main Main Main
		Dam Present □ Yes 🖽 No
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ☐ Trees ☐ Shrubs ☐ Gra dominant species present ☐ UNKNOWN	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant species present	□ Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors Mormal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Paper fiber Sand Relict shells Other Looking at stones which are not deeply embedded, are the undersides black in color? Yes No
WATER QUALITY	Temperature 10,59 ° C Specific Conductance 1.73 ms/cm Dissolved Oxygen 13.06 ms/l pH 7.85 Turbidity 8.2 NTV WQ Instrument Used HORIBA	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other

STREAM NAME PETTIBONE CREEK	STATION # NTC 17 PC 5060		
Reference or test? TEST		ı	
FORM COMPLETED BY	DATE 03-28-2017 TIME	REASON FOR SURVEY	
CB	1000		

r	
HABITAT TYPES	Indicate the percentage of each habitat type present
	☑ Cobble 50 % ☑ Snags 10 %
	□ Vegetated Banks%
	☐ Submerged Macrophytes% ☐ Other (₭₼₮₣₣₳₢₲)\ऽ%
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	□ Submerged Macrophytes □ Other ()
GENERAL	WISTH LIDET -7 10 SUBSTRATE . IO BANK
GENERAL COMMENTS	BOTTOM CORASE-TH THE FINE-TH DETAITUS- BANK- ROOTEANS-111

CHEETA

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

			11.0	Marie Contraction of the Contrac
	فيستنف فالشداد	المستعدد	S 11 - 12	
	OHFI	Sco	no: I	59.5
			- T - N	
۰				

Stream & Location: PE	TTIBONE CREEK			RM:	_Date: <u>0.3</u>
NTC17865060			me & Affiletion:_		
River Code: -	STORET #:		long:	<u>/8</u> _	
SUBSTRATE Check ONL astronte % BEST TYPES POOL BOULDER POOL BOULDER POOL GRAVEL TO	Procestation TYPE 60s or rick every type present OTHER TY HARDPAN OF THE TY HARDPAN OF THE TYPE OF T	(ES, POOL REFFLE (E) (E) (E) (E) (E) (E) (E) (E) (E) (E	Check Of CRIGIN * CRIGIN * LIMESTONE [1] TILLS [1] WETLANDS [0] HARDPAN [0] SANOSTONE [0] RIPRAP [0] LACUSTURNE [0] SHALE [-1] COAL PINES [-2]	SET	
INSTREAM COVER Inc. quality; 3-Highwat quality is mod diameter by that is state, well UNDERCIT BANKS [1] O OVERHANGING VEGET 3 SHALLOWS (IN SLOWY NOOTMATS [1] Comments	lerate or greater amounts (developed rootwed in deep POOLS \TTOM [1]ROOTY	ordinate ordinate of the control of	as in deep or fact water.		ACK ONE (Or 2 & awarego) EXTENSIVE >75% [11] HODERATE 25-75% [7] FARSE 5-25% [3] EARLY ABSENT <5% [1] Cover Maximum 20
SICHANNEL MORPHOLE SINUOSITY DEVELO HIGH PI EXCE MODERATE PI GOOD ZILOW [2] FARE HOME [1] POOR Comments	PMENT CHANN LEHT [7] HONE [6] [8] RECOVER 9) RECOVER	IELIZATION RED [4]	COM [4]		Chancel Abstruce 20
☐ MONE/LITTLE[3] ☐ ☐ MODERATE[2] ☐ ☐ HEAVY/SEVERE[1] ☑	RIPARIAN WETH WIDE > 50m [4] MODERATE 10-50m [3] NARROW 5-40m [2]	FLO	OD PLAIN QUALIT WANT [3] OLD FIELD [2] AL, PARK, HEW FIELD	ry DÖcon ⊠⊠unn mj⊡⊔unn	NSERVATION TELIAGE [1] SAN OR INDUSTRIAL [0] ING / CONSTRUCTION [0] Industrial (and small)
□0.7~tm[4] □0	FFLE / RUN QUALIT CHANNEL WIDTS CHACK ONE (OF 2 & avera DOL WIDTH > RIFFLE WE DOL WIDTH > RIFFLE WE DOL WIDTH > RIFFLE WE	CUR We CI OH P CI MODERA	ONTERMIT	TAL [-4]	Primary Contact Secondary Seco
	cles: RUN DEPTH MAXIMUM > \$0cm [2] □ MAXIMUM < \$0cm [7] □	Suck ONE (0:24 an RIFFLE / RUN S STABLE (ng., Cobb	rage) UBSTRATE RIFF le, Boukter)[2] Large Gravel)[1]	FLE / RUN I	^R □NO REFFLE (metric EMB ED DED NESS E [2]
6] GRADIENT (NO 10 mm DRAINAGE AREA EPA 4520	M) VERY LOW-LOW MICHAEL G-18 MICHAEL G-18 MICHAEL MI	1		%GLIDE:{ %RIFFLE:	Gradient IS Gradient OS/18/06

*-ORIGIN DETCRMINED FROM ILLINOIS GEOLOGICAL SURVEY, WAVEGAN QUADRANGLE AND SITE OBJERNATIONS.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: NTC17PC SD 60					DATE: 20 <u>1) - 0 3 - 2 8 (YYYY-MM-DD)</u>						
						Gr	abs			·	
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RF	8	21	27	25	19	14	\subset	29	C	SC
2	6-	23	19	13	The second of	15	19	16	35	14	12
3	G	SC	VC		21	13	20	34	26	55	29
4	ρ	VC	B	17	20	MC	VC	26	16	T-Canada y Principal Andreas A	15
5	P	VC	VC	LC	16	MC	VC	17	\sim	Μ	VF
6	P	6011	1900	3	79	7000	8	32	VC	VC	VC
7	RN	410	7	0	leo	45	VC	6	32	43	17
8	RF	BM	BM	110	120	18	4		55	18	a
9	6	140	HP	HP	140	146	18	28	VC.	3	И
10	RF	31	50	37	П	42	17	110	48	27	MC

= RF = RN = G

= P

BM=
Boulder Mo.

MC = Med Colone

LC = Lorge Cobble

Abbreviations: Silt/Clay Sand - Very Fine Sand - Fine Sand - Medium Hardpan Clay -Bedrock - BR

= SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder

Feature Types:
Riffle = RF
Run = RN
Glide = G
Pool P = C = VC = SB = MB = LB

Size Class		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062								
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25								
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravei	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48				-				
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	128-192								
		192-256			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION			
PETTIBONE CREEK	NAVAL STRT	THU GREAT LANCES		
STATION # N7C17 PC5D 61 Latitude 42.30 980 , 04				
PHOTO#	Longitude 037 84058			
INVESTIGATORS CB, BR, KS				
FORM COMPLETED BY	DATE	REASON FOR SURVEY		
CB CB	03-28-2012			

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	Local Water Erosion None Moderate Heavy Estimated Stream Width 2.3 m Estimated Stream Depth Riffle 0.10 m Run 0.25 m Pool 0.30 m Velocity 12.55 m/sec Estimated Reach Length 300 m
	High Water Mark <u>l. 7</u> m	Channelized Yes
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ☑ Trees ☐ Shrubs ☐ Gra dominant species present ☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent ☐ Rooted submergent ☐ Floating Algae ☐ Attached Algae dominant species present ☐ ☑ ៷ ☒ ☑ ☑ Portion of the reach with vegetative cover 60	□ Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors Vormal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Paper fiber Sand Cher Looking at stones which are not deeply embedded, are the undersides black in color? Yes No
WATER QUALITY	Temperature 11.0 2 ° C Specific Conductance 1.72 ms/cn Dissolved Oxygen 9.16 ms/L pH 6.91 Turbidity 11.8 WQ Instrument Used HORIBA	Water Odors Normal/None

cP

STREAM NAME PETTIBONE CREEK	STATION# NTCITPCSD &1			
Reference or test? TEST				
FORM COMPLETED BY	DATE _03-28-2012 TIME _0330	REASON FOR SURVEY		

HABITAT TYPES	Indicate the percentage of each habitat type present
ITTES	☑ Cobble <u>40</u> %
	□ Vegetated Banks%
	□ Submerged Macrophytes% □ Other (\$507WADS) 25 %
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	□ Submerged Macrophytes □ Other ()
GENERAL	WINTH LIDFT -7 10 BANK, 10 BOTTOM.
COMMENTS	BOTTOM BANK
	COARIE- MIIII SARG-III
	SOFT-1111 ROUTWAD-TILL
	DETAZTUS.
	LANCE PORTION OF RIGHT BANK IS RIP-RAP, REACH ALTERNATES
	BETUEEN SHALLOW AND DEEP AREAS DUE TO MODIFICATION.
	<u></u>

		200	
	-	4	

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

		1.0	
and the second			The second second second
ALIEI	-		/ /
UNCI	JCO	re: I	
			Make an and a second second second

Stream & Location:	PETTEBONE CREEK			RM:,	Oute: 03 28 06
NTC17PC5061		_Scorers Full N	ama & Affiliation:		
River Code: -	STORET #:	Annual Control of the	Long:	18 .	Office verified to the section
DEST TYPES	ONLY Two substants TYPE BOX • % or note every type present ONLY SEED IN	KES PES _{POOL REFLA}	Check Of ORIGIN X	E(0:24aw	
O O BOULDER (B)			□LMESTONE [1]		HEATTE - SIDET
GRAVEL [7]			□ WETLANDS [6] □ HARDPAN [6] □ SANDSTONE [6]		FREE[1]
BEDROCK 51		Azel substates ignore		* *	MODERATE [-1] Maximus HORMAL [8] 20
Comments	C to the [9]		COVE LINES PS		nonetd
2] INSTREAM COVER quality; 3-Highest quality in diameter big that is state, i UNITERCUT BANKS OVERHANGING VEG SHALLOWS (IN SLO ROOTMATS [1] Comments	ETATION [1] ROOTS		ounts or if more common ity or in small amounts of ity or the streets; it self-defined, functional p INBOWS, BACKWAYER QUATIC MACROPHYTI OGS OR WOODY DESSI		AMOUNT A ONE (O' 2 & overage) TENSIVE 575% [11] OCERATE 25-75% [7] ARSE 5-45% [3] ARLY ABSENT 45% [1] Cover Maximum 20
SINUOSITY DEVE	M (a) ME CO ARR NO [a] ME CO ARR CESTENA [a] MOHE IN	ELIZATION (UED) (4)	STABILITY HIGH [3] MODERATE [2] LOW [1]		Absimum 8
EROSION NONE/LITTLE[3] MODERATE[2] HEAVY/SEVERE[1]	VD RIPARIAN ZONE CHI RIPARIAN WIDTH RIPARIAN WIDTH WIDE> 50m [4] MODERATE 10-50m [2] MARROW 5-15m [2] WERY HARROW < 5m [FLOC	OD PLAIN QUALITY MANP [3] OLD FIELD [7] N. BASK HEW THE D. N	Y □□cons □□uns y□□mmm	ERVATION TELLAGE [1] IN OR INDUSTRIAL [0] G/CONSTRUCTION [0] Diffinise land use(s)
MAXIMUM DEPTH Check ONE (ONLY) > 1m 0 0.7~(1m 4)	RIFFLE / RUN QUALIT CHANNEL WIDTH Check ONE (Or 2 & avera PROOL WIDTH - RIFFLE WID POOL WIDTH - RIFFLE WID POOL WIDTH - RIFFLE WID	CUR:	RENT VELOCITY ack ALL find apply IM. [4] SLOW [1] T [1] INTERMITTE FE[1] EDDIES [1] for reach - pools and rifle	S.	creation Potential Primary Contact condary Contact assert asserts beat
Indicate for function of riffle-obligate at RFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS \$ 40cm [1] BEST AREAS \$ 5cm [matric=0] Comments	RUN DEPTH MAXIMUM > 50cm [2] [7] MAXIMUM < 50cm [1] [RIFFLE / RUN SU	rage) BSTRATE RIFFL -, Boulder)[2] Large Grave)[1]	E / RUN EN	1
DRAINAGE AREA	NHH) VERYLOW-LOW MODERATE (6-18) HIGH - VERY HIGH			GUDE:(Gradent 10 S Maximum 10

* ORIGIN DETERMINED FROM ILLINOIS GEOLOGICAL SURVEY, WAVEGAN QUADRANGLE AND SITE OBSENATIONS.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: NTC17 PCSD 61				DATE: 20 17 - 6 3 - 2 8 (YYYY-MM-DD)							
			Grabs								
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RH	Harvc.	8	(0)	151	24	HP	HP	HP	HP	HP
2	G	24	110	130	\overline{C}	17	VC	VC	70	45	23
3	6-	VF	M		13	33	17	14	19	MB	C
4	P	SB	9	5B	110	VC	110	5B	MB	83	14
5	RN	C	22	37	42	70	14	110	6	C	49
6	RN	15	37	14	18	18	Ца	112	32	123	54
7	G	68	28	37	27	60	27	35	20	33	24
8 ,	P	F	VF	VF	HP	HP	HP.	25	149	HP	HP
9	G	C	90	15	42	73	72	3	4	105	115
10	RF	200	160	32	172	48	58	SS	32	43	55

Abbreviations	

Sint/Clay
Sand - Very Fine
Sand - Fine
Sand - Medium
Hardpan Clay Bedrock - BR = SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder

= C = VC = SB = MB = LB

Feature Types:
Riffle = RI
Run = RI
Glide = G
Pool -= RF = RN = G

Size Cless		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062					ě			
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25								
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravei	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128		·						
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION				
PETTIBONE CREEK	NAVAL STATON GACKY CARES				
STATION# NTC178CSD62	Latitude 42.30929				
PHOTO#	Longitude 087, 83 430				
INVESTIGATORS 4. BR.					
FORM COMPLETED BY	DATE	REASON FOR SURVEY			
C\$	03-27-2012				

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	Estimated Stream Depth PRiffle 0:0 m FRun 0:20 m Pool 0:55 m Velocity 125 m/sec
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ☑ Trees ☐ Shrubs ☐ Grad dominant species present ☐ DEC ☑ DUOUS	asses
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent Rooted submergent Rooted Submergent Attached Algae dominant species present レッドルのいい	nant species present ☐ Rooted floating ☐ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits □ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No
WATER QUALITY	Temperature 12.34 ° C Specific Conductance 1.44 my/ca Dissolved Oxygen 10.78 myll pH \$133 Turbidity 13.2 WQ Instrument Used 10818A	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Slick Sheen Globs Flecks None Other Turbidity (if not measured) Clear Slightly turbid Turbid Opaque Water color Other
		□ Opaque □ Water color □ Other

STREAM NAME PETTIBONE CREEK	STATION# NTC17 PCSD 62				
Reference or test?					
FORM COMPLETED BY	DATE 03-27-2012 TIME 1630	REASON FOR SURVEY			

	72
HABITAT TYPES	Indicate the percentage of each habitat type present
TTPES	☑ Cobble 35 % ☑ Snags 25 % DETRITUS-5 %
	□ Vegetated Banks%
	☐ Submerged Macrophytes% ☐ Other (PooTwADS)%
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	□ Submerged Macrophytes □ Other ()
GENERAL COMMENTS	WHOTH < 10 FT7 10 BANK/ 10 BOTTOM
	BOTTOM- BANK-
	CORASE- 1774
	DETAITUS-1
	HEAVILY ERODED, INCISED STREAM. SOME RIP-RAP PRESENT ON BANKS AND STREAM MAY BE CONSTAUCTION DEBRIS.
	BANKS AND STREAM MAY BE CONSTAUCTION DEBAIS.
	·

_						
4	Secretary.	Section 5	2000	386		
	.000	-466				
	8.1	-922		304	2 3	
3.					4. 3	
Manager and the	and there	والمحادث والم والمحادث والمحادث والمحادث والمحادث والمحادث والمحادث والمحاد	Annual Contraction	and the same		6. 1

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

						10	- Similar Committee	3
2450			1			. 8	(C)	ľ
		0.00	. 1 1967	-	200 May 2	₽.8		ě
100	## £		(0)	* [*]	100	- 3		Ē
						. 8	Samuel Marketon Commence State	e
		100	10 min 10				Mariana Mariana Mariana	Ř

Stream & Location:	PETTIBONE CREEK		RA	. Date	03/27/06
NTC17PCSD62		_Scorers Full Nam	e & Affiliation:	BARBOUN TH	
River Code:	STORET#:	Let/Los	Total Colonia	<i>1</i> 8 .	Commercial
1] SUBSTRATE Chec	A ONLY Two scientists TYPE BOX				
P - DESTINATION	on % or rate every type present POOL REFLE OTHER TY	PES POOL REFLE _	ORIGIN *	Or 2 di average) QUA	ITTY
□□ BLOR/SLARS [10]	□ □ □ HARDPAS	(N) POOL REFLE	LIMESTONE [1]	DHEAVY	
O BOULDER P)			LIFTE [L]	SET DMOOR	LATE [-1] Substrat
☐ ☐ COBBLE [8]			WETLANDS [0] KAROPAN [0]	□ NORSE □ PREFI	
☐ svno [e] .	二二 HEARTPRO			DEA CLEXTEN	SIVE 121 L J
□ □ BEOROCK [5]			RIPIRAP (D)	TO MOORE	LATE [-1] Manufact
	TYPES: 4 or more (2) study	o.	SHALEHI	HORE! DNOHE!	rid 50
Comments		0	COAL FINES [2]	0,000000	
duminy, 3-Highest quality diameter big that its stable output that the control of	EGETATION [1] 1 ROOTIN 2 BOULD	ADS[1] Doctors	s or if more common of a r in small amounts of his deep or isst water, larg- defined, functional pool DWS, BACKWATERS I ATIC MACROPHYTES S OR WOODY DEBRIS	EXTENSIV	E 25-75% [7]
	OLOGY Check ONE in each o				
Annual microscopico del productivo d	ÆLOPMENT CHANN !XCELLENT[7] ☐ HONE [8]	SCHOOLSE STATE OF THE STATE OF	STABILITY		
	SOCO IN THE COVER		HIGH [3] MODERATE [2]		
	'AIR [3] RECOVER	MG(I)	rowin		
Comments	OOK[I] □ NECENTO	R NO RECOVERY[1]			Connect 5
- Territorio de Constanto de C					20
A BANK EROSION EROSION NONE / LITTLE [3]	AND RIPARIAN ZONE CHO RIPARIAN WIDTH RIPARIAN WIDTH MODERATE 10-50m [3]	FLOOD FOREST, SYMA SHRUB OR OU	PLAIN QUALITY	CONSERVATI	CHIRTHIAI IO
□ □ HEAVY / SEVERE [1	I 🗆 🗆 VERY HARROW - Sm [1	☐ ☐ FENCED PASTI	URE[1]	rdicate predominant	
Comments	□ NONE P)	O OPEN PASTUR	E, ROWCROP (19)	ant ICOm sparies.	Arperten Stestenson 10
	D RIFFLE / RUN QUALITY	in a single fragger of the Country o		n	
MAXIMUM DEPTH Chick ONE (ONLY)	CHANNEL WIDTH		NT VELOCITY ALL But exply	# # 10 S (22 S (23 S))))))))))))))))))))))))))))))))))))	n Potential
⊠×1m(q	POOL WOTH - REFLE WO	HPI OTOMENIAL			r Contact ry Contact
□ 0.7-ctm [4] □ 0.4-0.7m [2]	POOL WOTH- REFFLE WOT	HP) 🗆 VERY FAST (1	O INTERSTITIAL!	-1)	
□ 8.2-0.4m (1)	POOL WOTH - REFFLE WOT		DINTERMITTENT DEDOKES (1)	14	Pool / P
O<0.200 (P)		Intenta ky	each - pools and rifes.		Current
Comments					Maximum
Indicate for function riffle-obligate REFFLE DEPTH BEST AREAS > 10cm P	RUN DEPTH	eck ONE (Or 2 & average RIFFLE / RUN SUBS	STRATE RIFFLE	PRUN EMBEDO PRONE(2)	REFLE [next c=0]
DESTAREAS < 5cm	· Ul	INSTABLE (e.g., Fire Co	erel Sand (0)	☐ LOW [1] ☑ MODERATE [8]	RES./
[metric=0]	1	• • • • • • • • • • • • • • • • • • •		DECLE HOWE !	2
			Annual Control of the		
DRAINAGE AREA	Mmi) VERYLOW-LOW MODERATE (6-10) mi²) HIGH - VERY MIGH		,	LIDE:(60) FFLE:(20)	Greaters [10]
EPA-620					

*-ORIGIN DETERMENED FROM ILLINOIS GEOLOGICAL SURVEY I WAUKEGAN QUADRANGLE AND SITE OBSERVATIONS.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: NTC17PCSD 62				DA	DATE: 20/2-03-27(YYYY-MM-DD)						
			Grabs								
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	6	Μ	C	54	VC	MB	20	VC	VC	6	9
2	R	12	73	32	25	29	12_	VC	9	F	F
3	RF	17	14	21	16	25	22	VC	VC	8	13
4	RF	SC	VC	34	16	34	26	47	50	33	26
5	RN	C	9	28	45	33	M	38	40	#P	HP
6	Gi	16	NP	VF	VF	56	3	18	5	3	SC
7	G	M	C	3	3	6	46	48	HP	HP	HP
8.	RN	12	140	75	26	23	- Apprehisting	143	HP	HP	46
9	RN	58	66	50	57	47	127	81	32	7	60
10	RF	48	24	57	(0	32	24	48	50	63	O

Ab	brev	iatio	ns

Silt/Clay
Sand - Very Fine
Sand - Fine
Sand - Medium
Hardpan Clay Bedrock - BR

= SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder = C = VC = SB = MB = LB

Feature Types:
Riffle = RF
Run = RN
Glide = G
Pool Riffle Run Glide Pool

Size Clas		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Cloy		< 0.062							,,,	(io. an areas)
Sand	Very Fine	0.062-0.125		V						
	Fine	0.125-0.25			<u></u>		:			
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravel	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12			7,1	1			·	
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION		
PETTIBONE CAEEK	NAVAL STATION GNEAT LAKES		
STATION# NTC 17 PCSD 63	Latitude 42,38910		
PHOTO#	Longitude 097.83807		
INVESTIGATORS (%)			
FORM COMPLETED BY	DATE REASON FOR SURVEY		
CB	03/27/2012		

RIPARIAN ZONE/ INSTREAM FEATURES	☑ Residential Local Watershed NPS Pollution □ No evidence □ Some potential sources ☑ Obvious sources Canopy Cover	Local Water Erosion None Moderate Heavy Estimated Stream Width 3.5 m Estimated Stream Depth Riffle 0.20 m Run 0.25 m Pool 0.35 m Velocity 3 m/sec Estimated Reach Length 300 m FT Channelized Yes No		
	Indicate the dominant type and record the domin			
RIPARIAN VEGETATION (18 meter buffer)	Trees □ Shrubs □ Gra dominant species present □ DEC = DUOUS	asses ☐ Herbaceous		
	Indicate the dominant type and record the domin			
AQUATIC VEGETATION	□ Rooted emergent □ Rooted submergent □ Floating Algae ☑ Attached Algae dominant species present ☑ ▷ ▷ ▷ ▷ ▷ ▷ ▷ Portion of the reach with vegetative cover	□ Rooted floating □ Free Floating		
	Odors ☐ Normal ☐ Sewage ☐ Petroleum ☐ Chemical ☐ Anaerobic ☑ None ☐ Other	Deposits □ Sludge □ Sawdust □ Paper fiber ⊌ Sand □ Relict shells □ Other		
SEDIMENT/ SUBSTRATE	Oils Moderate □ Profuse	Looking at stones which are not deeply embedded, are the undersides black in color? Yes No		
	Temperature 10:60 °C Specific Conductance 1:69 ms fcm	Water Odors ☑ Normal/None □ Sewage □ Petroleum □ Chemical		
WATER QUALITY	Dissolved Oxygen 11.44 mg/L	☐ Fishy ☐ Other Water Surface Oils ☐ Slick ☑ Sheen ☐ Globs ☑ Flecks		
	pH <u>8.09</u> Turbidity <u>7.2</u>	☐ None ☐ Other		
	WQ Instrument Used HORTBA			

STREAM NAME PETTIBONE CAEEK	STATION# NTC17PC5D63		
Reference or test? TEST			
FORM COMPLETED BY	DATE _03-27-2012 TIME	REASON FOR SURVEY	
CO	1300		

I	
HABITAT TYPES	Indicate the percentage of each habitat type present
111 23	☑ Cobble 30 % □ Snags 10 %
	☑ Vegetated Banks 25 % □ Sand 35 %
	□ Submerged Macrophytes% □ Other ()%
SAMPLE COLLECTION	How were the samples collected? ☑ wading ☐ from bank ☐ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	□ Submerged Macrophytes □ Other ()
GENERAL COMMENTS	MEAN WIDTH 15-29 FT -> 8 BOITSM BANK 12 BOTTOM. GOTTOM COARSE (12) BANK(8)
	THE GRAVEL COURSE THE TREE ROOT 11 THE SOPT 11 - SVAG ST = COSTER CB
	1 THL . COURSE (CRAVEL, CUDDLE) 11 TM - SOFT (SAND ISSUT) Itschly modspied, HEAVY EROSSON OUTSSDE OF REACH. MUCH OF SUBSTRATE IS CONSTRUCTION DEGRIS.

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

		. Japanesia and a second
Service and appropriate	444	ere en Warte De Die
AUEI	200	AND THE COLUMN
		TOTAL CONTRACTOR OF THE PARTY O
	· 阿克斯克克斯克斯克克	Andrew Commence and the Commence of the Commen

NTC17PCSD63	PETTIBONE CREE		········	RM:	Detec 💇	21 = 11 40
			me & Affiliation:	Section of the section		
River Code:	- STORET#:	W/:	.orig.:	/8		(Miss verified totalism
SUBSTRATE Check	ONLY Two substate TYPE BOX • Nor note every type present		Check C	NE (Or 2 A		
A DEST TABLE	OTHER TY	PES _{POOL REFLE}	ORIGIN X		QUALI	TY
O BECOM/BEARS [10]		× (*)	CIMERTONE [1]	25.55	HEWAIS	
☐ BOULDER (B)			TILLS [1]	SHLT	□ MODERAT	
GRAVELIN			HARDPAN (O)		PREEDL	13
SANO[4]	D DANTING		D SANDSTONE (V)	400e0	LIEXTERSIV	
BEOROCK FI	(Screens (PES: 0)4 or more (P) skets	turid substanter (gnove ye from point-exustes)	☐RPRAP (D) ☐LACUSTURNE (D)	2 700.	HORMAL	Manuru M 20
Comments	Glorenia		D SHALE HIT		□ HOME[4]	
			COVT LINES [5]			
quality: 3-highest quality is did in maler by that is state, in the property and the proper	ETATION [1] 2_ROOT	//acc was or cording (> 700m [2] O WADS [1] A	s in deep of this water well-defined, Sinciponal KEOWS, BACKWATE QUATIC MACROPHY DGS OR WOODY DES		PACK ONE (OF EXTENSIVE) MODERATE SPARSE 5	24 (2) 2-244 (2) 444 (1)
	OLOGY Check ONE in each o					
		ELIZATION	STABILITY			
	CELENTIN HONE	Control of the Contro	□ MiGH [3]			
	DOOLE DECOME		MODESTATE [3]			
	MECOVER ☐ RECOVER	ORNO RECOVERY (1	□ rowld		3	Channel (
Comments		•				6 Inches
	NO RIPARIAN ZONE CH	and the second s			Lavage)	
EROSION HONE/LITTLE[3] MODERATE[2] HEAVY/SEVERE [1]	ND RIPARIAN ZONE CIME RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN	FLOC POREST, SI SIPRUS OR RESIDENTIA FENCED PA	OD PLAIN QUALI MAMP [3] OLD FIELD [2] N., PARK, NEW FIELD		ONSERVATION RBAN OR IND INNING / CONST predominant for im Sparten	STRIAL [0] RECTION [6]
EROSION HONE/LITTLE[3] MODERATE[2] HEAVY/SEVERE[1]	RIPARIAN WDTH WIDE> 50m [4] WIDE> 50m [4] MODERATE 19-50m [3] NARROW 5-10m [2] VERY HARROW < 5m [3]	FLOC POREST, SI SIPRUS OR RESIDENTIA FENCED PA	DD PLAIN QUALI NAMP [3] OLD FIELD [2] N., PARK, NEW FIELD ISTURE [1]		ONSERVATION RBAN OR IND INNING / CONST predominant for im Sparten	PETRIAL [0] PRINCTION [0] Principle
EROSION MONE/LITTLE [3] MODERATE [2] MODERATE [2] MEANY / SEVERE [1] Comments POOL / GLIDE AND MAXIMUM DEPTH Check ONE (ONLY) > 1m [4] G.4-45.7m [4] G.4-67.7m [3] G.2-68.4m [1] < 0.2m [6]	RIPARIAN WDTH WIDE> 50m [4] WIDE> 50m [4] MODERATE 19-50m [3] NARROW 5-10m [2] VERY HARROW < 5m [3]	FLOREST, ST	DO PLAIN QUALITY MANP [3] OLD FRELD [2] NL, PARK, NEW FRELD ISTURE [1] TURE, ROWCROP [8] RENT VELOCITY MAK ALL THE ROPY MAK [4] SLOW [1]	TALE-1	ONSERVATION REAM OR IND BRING / CONST predominant lar in sparter. M Recreation Primary (Secondar) parts massed as	Potential Contact Cont
EROSION HONE/LITTLE[3] HONE/LITTLE[3] HONE/LITTLE[3] HONE/LITTLE[3] HEAVY/SEVERE[1] COMMENTS POOL/GLIDE AND MAXIMUM DEPTH Check ONE (ONLY) The [6] 0.7-< tm [4] 0.4-4.7m [2] 0.2-4.4m [1] 0.2-4.3m [1] 0.2-4.3m [1] 0.2-4.3m [1] 0.2-4.3m [1]	RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN SAME [3] RIPARIAN GUALIT CHANNEL WIDTH CHAK ONE (0*2 & awaz POOL WIDTH > REFLE WID POOL WIDTH > REFLE WID	FLOREST, ST	DO PLAIN QUALI' MANP [3] OLD FRELD [2] N., PARK, NEW FIELD STURE [1] FURE, ROWCROP [6] RENT VELOCITY MCK ALL that apply ML [4] SLOW [4] T[4] SLOW [4] T[4] STERSHIT E[1] EDDIES [4]	TALE-1	ONSERVATION REAM OR IND BRING / CONST predominant lar in sparter. M Recreation Primary (Secondar) parts massed as	Potential Contact Contact Contact Contact Contact Contact Contact Contact
EROSION MONE! LITTLE [3] MODERATE [2] MODERATE [2] MEANY / SEVERE [1] MAXIMUM DEPTH Chick ONE (ONLY) 1 in [6] 6.4-6.7m [2] 6.2-6.4m [1] 6.2-6.4m [1] 6.2-6.4m [1] 7.2-6.4m [1] 8.2-6.4m [1] 8.2-6.4m [1] 9.2-6.4m [2]	RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN TO SOM [4] RIPARIAN STOM [4] RIPARIAN STOM [2] RIFFLE / RUN QUALIT CHANNEL WIDTH CHANNEL WIDTH CHACK ONE (0-2 & sweez POOL WIDTH > RIFFLE WID POOL WIDTH > RIFFLE WID POOL WIDTH > RIFFLE WID RIPARIAN STOM [4] RIPARIAN STOM [4] RIPARIAN STOM [4] RIPARIAN STOM [4]	FLOC FOREST, SI	DO PLAIN QUALIFIED PARK NEW FELD PARK NEW FELD PARK NEW FELD INTERPRETED PARK NEW FELD INTERPRETED PARK NEW FELD INTERPRETED PARK ALL that apply INTERPRETED PARK NEW FELD INTERPRETED PARK PROCESS TO A	MAL [-1] TENT [-2] Instruction	REAN OR NO REAN OR NO REAN OR NO REAN OR NO READ OF THE STREET RECORDER RECORDER SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY	Potential Contact Stations 12 FFLE [mettical Contact
EROSION BEROSION COMMENT LITTLE [3] MODERATE [2] MODERATE [2] MEANY / SEVERE [1] COMMENTS EN POOL / GLIDE AMI MAXIMUM DEPTH Check ONE (ONLY) 1 in [6] 0.3-4 in [4] 0.4-45.7 [2] 0.4-45.7 [2] 0.4-2-8.4 in [1] 0.4-2-8.4 in [1] 0.7-4 in [6] EN FFLE DEPTH BEST AREAS > 10 cm [7] COmments	RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN TO SOM [4] RIPARIAN STOM [4] RIPARIAN STOM [2] RIFFLE / RUN QUALIT CHANNEL WIDTH CHANNEL WIDTH CHACK ONE (0-2 & sweez POOL WIDTH > RIFFLE WID POOL WIDTH > RIFFLE WID POOL WIDTH > RIFFLE WID RIPARIAN STOM [4] RIPARIAN STOM [4] RIPARIAN STOM [4] RIPARIAN STOM [4]	FLOCE FOREST, ST FOREST FOREST, ST FOREST FORES	DO PLAIN QUALIFIED PARK NEW FELD PARK NEW FELD PARK NEW FELD INTERPRETED PARK NEW FELD INTERPRETED PARK NEW FELD INTERPRETED PARK ALL that apply INTERPRETED PARK NEW FELD INTERPRETED PARK PROCESS TO A	MAL [-1] TENT [-2] Instruction	Recreation Primary (Secondary (state se	Potential Contact Stations 12 FFLE [mettical Contact

*-ORICIN DETERMINED FROM ILLINOIS GEOLOCICAL SURVEY, WAVEGAN QUADRANGLE.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: NTC 17PCSO 63				DA	DATE: 2012-03-2 (YYYY-MM-DD)						
			·			Gr	abs	·	······································		
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RIFFLE	\circ	25	27	30	10	24	HP	HP	50	30
2	RF NUN/G	SC	50	10	12	10	15	23	26	SC	SC
3	6-	M	<i>C</i>	24	19	13	30	50	KB	c5-	TG
4	P	Μ	C	VC	10	9	13	il	SC	(8)	35
5	Ρ	15	20	18	120	17	0	16	VF	SC	50
. 6	RN	8	45	130	23	30	47	Sa	34	24	50
7	G	50	50	Μ	VC	21) installed	VC	VC	0	રેર
8.	RN	HP	HP	Ŷ	5	રફ	31	ve	VC	32	23
9	RN	Μ	C	52	47	53	18	C	48	10	49
10	RF	47	21	0	16	LB	63	65	Sb	30	21

Ahh	reviat	iane.
$\sim \omega \omega$	CYIGI	IUIID.

Abbreviations:
Sill/Clay
Sand – Very Fine
Sand – Fine
Sand – Medium
Hardpan Clay –
Bedrock – BR

= SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder

= C = VC = SB = MB = LB

Riffle Run Glide Pool = RF = RN = G

Feature Types:

Size Clas	s .	Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total	Cumulative Total
- In fact							<u> </u>	ļ	(for all features)	(for all sizes)
Silt/Clay		< 0.062								
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25								
	Medium	0.25-0.50								
	Coarse	0.50-1.0								-
	Very Coarse	1.0-2.0								
Gravel	Very Fine	2-4								
	Fine	4-6								<u> </u>
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-9 6								
		96-128								
	Large	128-192							<u> </u>	· · · · · · · · · · · · · · · · · · ·
		192-256			***					
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

STREAM NAME	LOCATION		
PETTIBONE CAEEK	NAVAL STATES	N GREAT LANCOS	
STATION# NTC 17 PCSD 64	Latitude 42,30472		
PHOTO #	Longitude 087.83649		
INVESTIGATORS CB, BR			
FORM COMPLETED BY	DATE	REASON FOR SURVEY	
CB.	03/27/2012	·	

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other MILITARY GASE Local Watershed NPS Pollution No evidence Some potential sources Obvious sources Canopy Cover Partly open Partly shaded High Water Mark 1.8 m	Estimated Stream Depth ☑ Riffle ○ 2 ○ m ☑ Run ○ 5 ○ m ☑ Pool ○ 3 ○ m Velocity 1 m = 4 5 m/sec
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domined Trees □ Shrubs □ Gradominant species present □ DECIDUOUS	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent ☐ Rooted submergent ☐ Floating Algae ☐ Attached Algae dominant species present ☐ UNICODE ☐ Portion of the reach with vegetative cover ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	☐ Rooted floating ☐ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Paper fiber Sand Cher Looking at stones which are not deeply embedded, are the undersides black in color? Yes
WATER QUALITY	Temperature_11.86° C Specific Conductance_1.66 ask \ Dissolved Oxygen _12.04 \ pH _8.35 Turbidity _8.3 WQ Instrument Used	Water Odors Normal/None

STREAM NAME PETTIBONE CREEK	STATION # NTC 17865064				
Reference or test?					
FORM COMPLETED BY	DATE 03/27/2012	REASON FOR SURVEY			
cB	TIME SIG	,			

	I and the second
HABITAT TYPES	Indicate the percentage of each habitat type present
	☐ Cobble 20 % ☐ Snags 25 % DETRITUS. 20
	□ Vegetated Banks%
	☐ Submerged Macrophytes% ☐ Other (Ros TWAD)%
SAMPLE COLLECTION	How were the samples collected? ☑ wading ☐ from bank ☐ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble Snags
	□ Vegetated Banks □ Sand
	☐ Submerged Macrophytes ☐ Other ()
GENERAL COMMENTS	BOTTOM (12) BANK (8)
*	SOFT-THE SNAG-THE
	DETRITUS-1111
	BOTTOM OF REACH & WAS DISTURBED DUE TO FALLEN TREES
	BOTTOM OF REACH & WAS DISTURBED DUE TO FALLEN TREES AND MAINTENANCE CREW CLEANUP. ENTIRE LEFT BANK SHORED WITH RIP-RAP.
	•

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

		- Accommon constitution of
AND 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		The same of the sa
	A	AND THE PARTY OF T
The second second	THE RESERVE	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.47.1.100	The second secon

Stream & Location:	PETTIBONE CASEK		RM:Detec	21 271 06
NTC 17 PCSD 64		Scorers Full Name & Affiliation:	CHAD BANGOUR TE	
River Code:	STORET#:			Coffice resident [2]
1] SUBSTRATE Check estimate of the control of the c	ONLYTwo substate TYPE BOX In % or note every type present OOL RIFFLE OTHER TYI OOL RIFFLE OHER TYI OOL RIF	Check C PES POOL RIFFLE OR IGIN X [16] LIMESTONE [1] LIMESTONE [1] LIMESTONE [1] WETLANDS [1] WETLANDS [1] WETLANDS [1] WETLANDS [1] ACCUSTURINE [1] SHALE [-1] COAL PINES [-2] Sent; 1-Very small amounts or if more common of not of highest quality or in small amounts of very limest control of the country of t	ONE (0-2 & average) QUALIT HEAVY (2 SILT MODERAT FREE (1) FREE (1) FREE (1) HOOSELAT HONE (4) FREE (1) HONE (4) FREE (1)	INT MARKET POR TOPS (14)
O ROOTMATS [1]				
SINUOSITY DEM	CCELLENT [7] HONE [8] COC [8] RECOVER UR [3] RECOVER	ELIZATION STABILITY HIGH [3] ED [4] MODERATE [2]		Sance (2)
EROSION NONE/UTTLE[3]	RIPARIAN WIDTH WIDE> 50m [4] MODERATE 19-50m [3] MARROW 5-10m [2]	ck ONE in such category for EACH BANK(O FLOOD PLAIN QUALI FOREST, SWAMP [3] SHRUB OR OLD FIELD [2] MRESDENTIAL, PARK, NEW RELD [1] FENCED PASTURE [1]	TY B CONSERVATION D C	ESTRIAL [1] TELECTION [1]
MAXIMUM DEPTH Creek ONE (OVLY) []> fm[q]	CHANNEL WIDTH CHANNEL WIDTH Chack ONE (Or 2 & avera POOL WIDTH - REFFLE WID POOL WIDTH - REFFLE WID	CURRENT VELOCITY Chack ALL Syd apply FI [7] O TORRENTIAL [4] [2] SLOW [9] FI [1] O VERY PAST [9] [2] INTERSTIT	Primary C Secondary (deth massed and page)	Contact Contact
of riffle-obligate is REFFLE DEPTH BEST AREAS > 19cm [2] BEST AREAS \$40cm [1] BEST AREAS < 5cm [metric=0] Comments	Species: C RUN DEPTH MAXIMUM > 50cm [2] U MAXIMUM < 50cm [1] U	must be large enough to support hick ONE (07.2 & awrige). RIFFLE / RUN SUBSTRATE RIFF STARLE (e.g., Cobbie, Boulder) [2] MOD. STARLE (e.g., Large Gravel) [1] UNSTABLE (e.g., Fine Gravel, Sand [6]	FLE / RUN EMBEDDE	R#16-7
BRADIENT (NO.0) DRAINAGE AREA	mp) HIGH-VERY HIGH		Water and the second	Gradient ID IO 06/16/06

* - ORICAN DETERMINED FROM ILIANIS GEOLOGICAL SUNUEY, WAUKEGAN QUADRANGLE AND SITE BEENLATIONS.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: 🛭	VTC17PC	50 6	DA	DATE: 20/2-03-27 (YYYY-MM-DD)							
			Grabs								
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RF	19	33	26	9	20	50	32	7	40	13
2	ZZ	W	Μ	C	23	65	(المليخ	7930	7240	C	14
3	ρ	W	VC	16	15	12	120	>1290	>400	2	M
4	6	VC	VC	VC	19	8	Show	7900	3/100	SC	SC
5	RP	W	9	14	VC	VC	8	4	7	5	4
6	RN	50	50	0	27	M	10	VF	VF	VF	SC
7	61	13	22	49	24	7	28	127	163	54	48
8	4	(3	43	14	28	123	49	48	21	21	37
9	RN	11	40	23	19	1	41	42	29	44	32
10	RN	34	68	HP	HP	HP	HP	40	B	VC	M

Abbreviations: Silt/Clay Sand – Very Fine Sand – Fine Sand – Medium Hardpan Clay – Bedrock – BR	= SC = VF = F = M = HP = BR	Sand – Coarse Sand – Very Small Boulder Medium Large Boulder	= C = VC = SB = MB = LB	Feature Types: Riffle = RF Run = RN Glide = G Pool > P	After recording transects above transcribe data into table below. Usually done by data entry person.

Size Clas	\$	Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total	Cumulative Total
Silt/Clay		< 0.062					<u> </u>		(for all features)	(for all sizes)
Sand	7									
sana	Very Fine	0.062-0.125								
	Fine	0.125-0.25	:		1,000					
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravel	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION		
SOUTH BRANCH PETTIOONE CREEK	NAVAL STATION GREAT LAKES		
STATION# NTCM PC 50 65	Latitude 42,30893		
PHOTO#	Longitude 087.84045		
INVESTIGATORS CB, BR, KS			
FORM COMPLETED BY	DATE	REASON FOR SURVEY	
CB	03-24-2012		

FIELD DATA - PHYSICAL CHARACTERIZATION / WATER QUALITY

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	Estimated Stream Depth Riffle 0.10 m Run 0.25 m Pool 0.60 m Velocity 4.2835 m/sec
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ☑ Trees □ Shrubs □ Gra dominant species present □ DECIDUOUS	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent Rooted emergent Rooted submergent Attached Algae dominant species present Portion of the reach with vegetative cover	ା Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits □ Sludge □ Sawdust □ Paper fiber ☑ Sand □ Relict shells □ Other Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑ No
WATER QUALITY	Temperature_8.77_°C Specific Conductance_1.73 ms/cm Dissolved Oxygen _14.28 ms/l pH _8.05_ Turbidity _17.1 * - Turbitoty #3GH Fram walking 3N WQ Instrument Used _438-388	Water Odors Normal/None Sewage Chemical Fishy Other Water Surface Oils Slick Sheen Globs Flecks None Other Turbidity (if not measured) Clear Slightly turbid Turbid Opaque Water color Other

FIELD DATA - BENTHIC MACROINVERTEBRATE SAMPLE

STREAM NAME SOUTH BRANCH PETTOBLUE CR.	STATION# NTO	17 8 650 65
Reference or test? REFERENCE	4	•
FORM COMPLETED BY	DATE 03-24-2012 TIME 1009	REASON FOR SURVEY

HABITAT TYPES	Indicate the percentage of each habitat type present
20	☑ Cobble <u>40</u> % ☑ Snags <u>30</u> %
	□ Vegetated Banks%
	☐ Submerged Macrophytes% ☐ Other(♀ゥゥャレAD) 1 ○%
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	☐ Submerged Macrophytes ☐ Other (
GENERAL COMMENTS	WIDTH & 10 FT. —7 10 BOTTOM, 10 BANK. BOTTOM: GANK: COARSE-IN III FINE-IIII DETRITUS-
,	HEAVILY ERODED BANKS OWITH MANY TREES FALLING INTO CHANNEL. PORTIONS OF REACH SCOURED TO SILT-CLAY LAYER.

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

CHIET	**	
Unci	OCUI	194

Stream & Location: 5 OUTH	BRANCH PETTIBONS	-4 CEK	RM:	_ Date: 0 3 J	23/08/2018
NTC 17 PCSD 65	Score	rs Full Name & Affillation			
River Code:	STORET #:	Lat/Long:	/8		
1 SUBSTRATE Check ONLY To	o substata TYPE BOXES.		ONE (0-24		
BEST TYPES FOOL BE	te every type present FLE OTHER TYPES PO			QUALITY	
□ □ BLOR/SLABS [10]	[] [] KANDPAN [4]		25, 984	HEAVY[4]	and the second second
		☐ TELS [1] ☐ WETLANDS [0]	SALT	□ MODERATE (-) Siberia
GEAVELDI		DHARDPAN (#)		FREE (1)	14
☐ SYNDIA	[DARTFICIAL P)_	☐ SANOSTONE (I)	40000	DEXTENSIVE (S	
NUMBER OF BESTTYPES:	(Score nakiral subs		43 TA	MORMAL [6]	' <i>Maximum</i> 20
Comments	∃3 or home [0]	Courtell		□ NONE[4]	
	SUNT TO THE USE OF SERVICES	☐ COAL THES KS			
Z] INSTREAM COVER Indicate quality: 3-Highest quality in moderal diameter by that is stable, well developed to the covernancing vegetation in shallows (in slow water rootmats (i)).	or greater amounts in g., very loped codyand in deep / fact we in POCLS > 75cm POCLS > 75cm ROOTWADS [1]	berge bruidens in deep of field wel ber, or deep, well-defined, function	alpook constill rrestill	A MOUNT THAN CHE (D. 2 & EXTENSIVE >7 or SHOOGERATE 25-71 S PARSE 5-25% NEARLY ABSENT Co Maxin	(H) (H) (A) (A) (A) (A) (A)
31 CHANNEL MORPHOLOGY	Check ONE in each category	Or 24 meterops)			
SINUOSITY DEVELOPM					
□ HIGH NI □ EXCELLEN		□ NICH [3]			
□ MODERATE PI □ GOCO [S] □ LOW [2] □ FARE[3]	RECOVERED (4	☐ MODERATED			· · · · · · · · · · · · · · · · · · ·
□ HONE [1] ☑ POOR [1] Comments	🗏 ВЕСЕНТ ОЯ НО В		******	Ga. Asun	
	ARIAN ZONE CHICK ONE I	n sech category for EACH BANK! FLOOD PLAIN QUA			
		FOREST, SWAMP [7]		DISERVATION TE. RBAN OR INDUST	
		SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIEL			
G CHEAN (SEVERE II)				oredominent land us	
Comments	OKE (P)	OPEN PASTURE, ROWCROP	y perm	m Aparlon - Pipa Masin	
				. 5 (487-1-1)	10 0
5) POOL / GLIDE AND RIFFL MAXIMUM DEPTH	E / RUN QUALITY CHANNEL WIDTH	CURRENT VELOCIT	J I	Recreation Pot	ential
	ick ONE (Or 2 & average)	Check ALL that apply		Primary Con	**************************************
* *	WEOTH - REFFLE WHOTH [2]	□ torrental[4] □ slow[□ very fast[1] □ daters:	1	Secondary Co	ntact
Secret Secret			menia l	(48 h anne)	==11
□ 6.2<6.4m[1]		MODERATE (1) DEDDIES			
□<0.2m p) Comments		mican a rear - pros an		Mass	

Indicate for functional ri of riffle-obligate species REFFLE DEPTH R	Cad Of	e large en ough to suppor E (Or 2 & average) E / RUN SUBSTRATE RI		<u> Linvari</u>	<u>E[netic=9]</u> ce e
The second secon	(BRM > 50cm [7] [STARL)			HE [2]	
BEST AREAS S-10cm [1] DMA	(MIM < 50cm [1] ☐ MOO. S	TABLE (e.g., Large Gravel) [1]	月 2		W. 16
DEST AREAS < Sem [matric=0]		LE (e.g., Fire Gravel, Sand) [17]	HEX.		
Comments	Scal	INED TO SOUT CLAY			
6] GRADIENT (10.0 mm) (VERYLOW-LOW [2-4]	%POOL: (25		* The state of the	1/1 2
		%RUN: (5)%RIFFLE:	A CONTRACTOR OF THE PARTY OF TH	CONTRACTOR SEE
	HIGH - VERY HIGH (10-4)	%RUN: (5	<u> </u>	(20)	10 1

*-ORIGIN DETERMINED FROM ILLINOIS GEOLOGICAL SURVEY, WANKEGAN QUADRANGLE.

Reviewed By:_____ Page__

PEBBLE COUNT FIELD DATA SHEET

SITE ID:	UTC17PC SI) 60	>	DA	TE: 20	12-0	23-	29	(YY)	/Y-MM	-DD)
						Gr	abs				
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RX	HP	HP	HP	- Chicago Alla	16	HP	5	50	2)	M
2	RF	19	HP	HP	65	HP	HP	HP	41	50	26
3	RY	20	100	110	70	80	21	CS*	65	55	49
4	RE	56	35	47	58	50	42	35	43	65	45
5:	RN	50	5C	18	5	9	43	45	28	21	22
6	RF	HP	HP	NO	42	50	60	80	40	45	40
7	RF	120	80	60	HP	HP	C	40	100	50	56
8	BE	43	50	18	30	3 7	40	40	25	25	20
9	Ğ	VC	Μ	8	45	8	6	5C	SC	22	50
10	P	SC	SC	SC	SC	SC	Sc	SC	SC	SC	SC

Abbreviations: SilVClay Sand – Very Fine Sand – Fine Sand – Medium Hardpan Clay – Bedrock – BR

= SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder = C = VC = SB = MB = LB

Feature Types:
Riffle = RF
Run = RN
Glide = G
Pool

After recording transects above transcribe data into table below. Usually done by data entry person.

Size Cles		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062								
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25								
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0					·			
Gravel	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48							·	
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	178-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION			
SOUTH BRANCH PETTIBONE CREEK	NAVAL STATION GREAT LAKES			
STATION# NTC17825066	Latitude 12.30800			
PHOTO#	Longitude 087.84142			
INVESTIGATORS CO. BR. KS				
FORM COMPLETED BY	DATE	REASON FOR SURVEY		
C b	03-29-2012			

FIELD DATA - PHYSICAL CHARACTERIZATION / WATER QUALITY

	Predominant Surrounding Landuse	Local Water Erosion				
	☐ Forest ☐ Commercial ☐ Field/Pasture ☐ ☐ Industrial	□ None □ Moderate ☑ Heavy				
	☐ Residential ☐ Industrial ☐ Other Macana ☐ Other ☐ Oth	Estimated Stream Width 2.1 m				
		Estimated Stream Depth				
RIPARIAN ZONE/	Local Watershed NPS Pollution ☐ No evidence Some potential sources	S√Riffle <u>0.45</u> m SfRun <u>0.25</u> m SfPool <u>0.45</u> m				
INSTREAM FEATURES	☐ Obvious sources	Velocity \m/sec				
	Canopy Cover ☐ Partly open ☐ Partly shaded ☑ Shaded	-				
	High Water Mark 1.4 m DIFFICULY TO DETERMINE DUE TO	Channelized Yes No				
	EROSION OF BANK)	Dam Present □ Yes ଔNo				
RIPARIAN VEGETATION	Indicate the dominant type and record the domin Trees □ Shrubs □ Gra	nant species present asses ☐ Herbaceous				
(18 meter buffer)	dominant species present					
	Indicate the dominant type and record the domin	nant species present				
	□ Rooted emergent □ Rooted submergent	□ Rooted floating □ Free Floating				
	☐ Floating Algae ☑ Attached Algae	□ Free Floating				
AQUATIC VEGETATION	dominant species present U NKNOWN					
1	Portion of the reach with vegetative cover $\underline{-35}$					
	Odors Sewage Petroleum	Deposits □ Sludge □ Sawdust □ Paper fiber □ Sawdust □ Paper fiber □ Sand				
	Normal ☐ Sewage ☐ Petroleum ☐ Chemical ☐ Anaerobic ☐ None	Deposits □ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other				
SEDIMENT/ SUBSTRATE	Normal □ Sewage □ Petroleum	□ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply				
SEDIMENT/ SUBSTRATE	<pre></pre>	□ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in				
SEDIMENT/ SUBSTRATE		☐ Sludge ☐ Sawdust ☐ Paper fiber ☐ Sand ☐ Relict shells ☐ Other ☐ Characteristics ☐ Other ☐ ☐ Other ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐				
SEDIMENT/ SUBSTRATE	<pre></pre>	□ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No Water Odors				
SEDIMENT/ SUBSTRATE	Brownal □ Sewage □ Petroleum □ Chemical □ Anaerobic □ None □ Other	□ Śludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No				
SEDIMENT/ SUBSTRATE	Image: Imag	□ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No Water Odors □ Normal/None □ Sewage □ Petroleum □ Chemical □ Fishy □ Other □				
	Sewage ☐ Petroleum ☐ Chemical ☐ Anaerobic ☐ None ☐ Other ☐ Oils ☐ Absent ☐ Slight ☐ Moderate ☐ Profuse ☐ Profuse ☐ Conductance ☐ 1.65 ○ 40 ☐ Dissolved Oxygen ☐ 1.99 ○ 11	□ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No Water Odors □ Normal/None □ Sewage □ Petroleum □ Chemical				
SEDIMENT/ SUBSTRATE WATER QUALITY	Sewage ☐ Petroleum ☐ Chemical ☐ Anaerobic ☐ None ☐ Other ☐ Oils ☐ Absent ☐ Slight ☐ Moderate ☐ Profuse ☐ Profuse ☐ Conductance ☐ 1.65 Absent ☐ Dissolved Oxygen ☐ 1.99 April ☐ Dissolved Oxygen ☐ Dissolved Oxy	Sludge				
	Sewage ☐ Petroleum ☐ Chemical ☐ Anaerobic ☐ None ☐ Other ☐ Oils ☐ Absent ☐ Slight ☐ Moderate ☐ Profuse ☐ Profuse ☐ Conductance ☐ 1.65 Absent ☐ Dissolved Oxygen ☐ 1.99 April ☐ Dissolved Oxygen ☐ Dissolved Oxy	□ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No Water Odors □ Normal/None □ Sewage □ Petroleum □ Chemical □ Fishy □ Other □ Water Surface Oils □ Slick □ Sheen □ Globs □ Flecks □ None □ Other □ Turbidity (if not measured) □ Clear □ Slightly turbid □ Turbid				
	Sewage ☐ Petroleum ☐ Chemical ☐ Anaerobic ☐ None ☐ Other ☐ Oils ☐ Absent ☐ Slight ☐ Moderate ☐ Profuse ☐ Profuse ☐ Conductance ☐ 1.65 ms/cm ☐ Dissolved Oxygen ☐ 14.99 molt ☐ Dissolved Oxyge	Sludge				
	Sewage ☐ Petroleum ☐ Chemical ☐ Anaerobic ☐ None ☐ Other ☐ Oils ☐ Absent ☐ Slight ☐ Moderate ☐ Profuse ☐ Profuse ☐ Dissolved Oxygen ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	□ Sludge □ Sawdust □ Paper fiber □ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes □ No Water Odors □ Normal/None □ Sewage □ Petroleum □ Chemical □ Fishy □ Other □ Water Surface Oils □ Slick □ Sheen □ Globs □ Flecks □ None □ Other □ Turbidity (if not measured) □ Clear □ Slightly turbid □ Turbid				

FIELD DATA - BENTHIC MACROINVERTEBRATE SAMPLE

STREAM NAME SOUTH BRANCH PETTIBONE CR.	STATION# NTC	17 Pc 50 66
Reference or test? REFERENCE		
FORM COMPLETED BY	DATE 63-29-2012	REASON FOR SURVEY
CO	TIME 	

HARITAT	ludicate the personters of each habitat type procent
HABITAT TYPES	Indicate the percentage of each habitat type present
	© Cobble 20 % © Snags 35 % ROUTWAD - 5
	□ Vegetated Banks%
	☐ Submerged Macrophytes% ☐ Other(♀♀♀♀) io%
SAMPLE COLLECTION	How were the samples collected? □ wading □ from bank □ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble
	□ Vegetated Banks □ Sand
	☐ Submerged Macrophytes ☐ Other ()
GENERAL	WIOTH LID FT -> 10 BOTTOM, 10 BANK.
COMMENTS	BOTTON: BANK:
	BOTTON: BANK: COARSE-IIII ROOTWAD-1
	FINE - IIII SNAG - ITN II
	HEAVILY EMODED BANKS, PORTIONS OF REACH SCOURED TO STUTICLAY

QHEI Score: 58.5

			_	-
	min.	100000	200	
			200	
	900	Second d	926	
				20.0
Constitution of the control	nonecont to an inter-	00000000000	of Vene	and broad

Qualitative Habitat Evaluation Index and like Assessment Field Shoot

1 1 mm 1 1 mm 10 1 1	PN / /					
NTCITPLS	(************************************		rs Full Name & Affiliation	on:		
River Code:		STORET #:	Let/Long:	/8	. a	to recition o
SUBSTRATE	Check ONLY Two sub	state TYPE BOXES				lo metion l
	estmete % or note ev	ery type present	Ch.	ick ONE (Or 2	Eaverage)	
BEST TYP		OTHER TYPES PO	OLREFLE CRIGIN		QUALITY	
D BLOW /BLASS		□ □ MYMDLYN [4] ===	LILMESTONE	7	DHEAVY[2]	
COBBLE (B)		□ □ O€LKUAS [3] =	Dursu	SH T	MODERATE [-1]	Sibera
GRAVELIT			DWETLANDS #		□ NOUNAT [d]	
SANO IS			☐ HARDPAN (0)			12
BEDROCK	1	(Score net red subsid		PI SOORQ	EXTENSIVE (2)	
		a more [2] skulge from po			POSTANT IN	Section of the Party of the Par
Comments		riom (d)	□ SHALE FT		DHOMETH	20
A R. A R. S. R. S. R. S. S.		An produce the second s			Acres Anna Contraction I will	86
INSTREAM Country; 3-Highest quality; 3-Highest quality is controlled to the country of the count	quality, 2-Mos unity in moderate or go statio, well developed EANOS [1]	lerate emounts, but not of seater emounts (e.g., very) socked in deep / fast with		renon of margin unts of highest sate, large mad pooks. ATERNS [1]	Creck ONE (O 2 & a EXTENSIVE POR) MODERATE 25-79	[11] 6 [7]
J INSTREAM C quality; 3-Highest q dismeller bg that is O UNDERCUT I OVERHANGE	quality, 2-Mo unity in moderate or go statie, wail developed SANKS [1] NG VEGETATION [1] IN SLOW WATER) [1]	lerate amounts, but not of teater amounts is 0, very it sociated in deep /fact withPOOLS > 70cm pROOTWADS FIT	ry small amounts or if more cor righest quality or h small amou large bruikdess in deep or fast w er, ordeep, well-defred, funds	rmon of magin unto of highest was furgies and pook. ATERS [1] HATERS [1]	Chack ONE (072 & a EXTENSIVE ×79%) MODERATE 25-799 SPARSE 5-425% (1) MEARLY ABSENT	
INSTREAM C quality; 3-Highed quality; 3-Highed quality; 0 UNDERCUT 8 1 OVERHANGE 1 SHALLOWS (6 ROOTMATS (Comments	quality, 2-Moo unity in moderate or g statie, well developed santos (1) NG VEGETATION [1] IN SLOW WATER) [1]	lerate amounts, but not of the safer amounts is quivery is socked in deep / fact was POOLS > 76cm p	ry small amounts or if more corriginest quality or in small amounts in depth of the small amount	rmon of magin unto of highest was furgies and pook. ATERS [1] HATERS [1]	Chack ONE (07 2 8 as EXTENSIVE ×7 9%) MODERATE 25-79 BPARSE 5-439% (1) MEARLY ABSENT - Continued to the continued of the	
INSTREAM Country: 3-Highest quality: 3-Highest quality: 3-Highest quality: 0-VERHANGI SHALLOWS 0-ROOTMATS COmments	quality, 2-Moo unity in moderate or g statie, well developed santos (1) NG VEGETATION [1] IN SLOW WATER) [1]	device amounts, but not of inside amounts (e.g., very insolved in deep / fact with pools > 76 ms processes of the pool of the	ry small amounts or if more corregions quality or in small amounts in general amounts in	rmon of magir unts of highest ster, large ster, large onel pook. ATERS [1] PHYTES [1] DEBRIS [1]	Chack ONE (07 2 8 as EXTENSIVE ×7 9%) MODERATE 25-79 BPARSE 5-439% (1) MEARLY ABSENT - Continued to the continued of the	(n) (n) (n)
INSTREAM C quality; 3-Highest quality; 3-Highest quality; 3-Highest quality; 3-Highest quality; 3-HALLOWS; 3-H	quality, 2-Mos unity in moderate or g stattle, wait developed SANICS [1] IS NECOWNATER] [1] IN SLOW WATER] [1] IN SCOWNATER] [1] IN SECULIARIES OF THE SECULIARIES OF	device amounts, but not of inside amounts (e.g., very inside amounts) (e.g., very insi	ry small amounts or if more corregions quantity or in small amounts in general amounts in	rmon of magir unts of highest ster, large ster, large onel pook. ATERS [1] PHYTES [1] DEBRIS [1]	Chack ONE (07 2 8 as EXTENSIVE ×7 9%) MODERATE 25-79 BPARSE 5-439% (1) MEARLY ABSENT - Continued to the continued of the	
INSTREAM C quality: 3-Highest quality: 3-Highest quality: 3-Highest quality: 3-HALLOWS (\$ ROOTMATS COMMENTS CHANNEL MC SINUOSITY HIGH R) MODERATE [3]	quality, 2-Moo unity in moderate or guidate, wait developed statie, gri in SLOW WATER) [1] in SLOW WATER [1] i	Serie amounts, but not of insider amounts is g. very insider amounts is g. very insider amounts in g. very insider amounts in g. very inside in series in g. POOLS > 76cm [F. ROOTWADS [1] BOULDERS [1] SOULDERS [1] X ONE in each category (CHANNELIZATI HOME [6] RECOVERED [4]	ry small amounts or if more contributed quality or in small amounts or if more contributed to the portion of the property of t	rmon of margir unts of highest saler, large saler large onel pools. ATERS [1] HATTES [1] DEBRIS [1]	Chack ONE (07 2 8 as EXTENSIVE ×7 9%) MODERATE 25-79 BPARSE 5-439% (1) MEARLY ABSENT - Continued to the continued of the	
INSTREAM C	quality, 2-Moo unity in moderate or g. statie, well developed lankes [1] IN SLOW WATER; [1] IN SLOW WATER; [1] II) ORPHOLOGY Ches DEVELOPMENT EXCELLENT [7] GOOD [5] FARE [3]	device amounts, but not of inside amounts (e.g., very) and water with process of the process of	ry small amounts or if more contributed quality or in small amounts or if more contributed quality or in small amounts or in s	rmon of margir unts of highest saler, large saler large onel pools. ATERS [1] HATTES [1] DEBRIS [1]	Check ONE (0*2 & a EXTENSIVE 39 SA MODERATE 25-751 BPARSE 5-05% (1) HEARLY ABSENT Covered Maximum	(P) 3×01 14
INSTREAM County: 3-Highest quisity: 3-Highest quisity: 3-Highest quisities to githat is overhand! OVERHANG! BHALLOWS: BROOTMATS COMMENTS COMMENTS CHANNEL MC SINUOSITY HIGH	quality, 2-Moo unity in moderate or guidate, wait developed statie, gri in SLOW WATER) [1] in SLOW WATER [1] i	Serie amounts, but not of insider amounts is g. very insider amounts is g. very insider amounts in g. very insider amounts in g. very inside in series in g. POOLS > 76cm [F. ROOTWADS [1] BOULDERS [1] SOULDERS [1] X ONE in each category (CHANNELIZATI HOME [6] RECOVERED [4]	ry small amounts or if more contributed quality or in small amounts or if more contributed quality or in small amounts or in s	rmon of margir unts of highest saler, large saler large onel pools. ATERS [1] HATTES [1] DEBRIS [1]	Check ONE (0 * 2 & a EXTENSIVE * 79% MODERATE 25-79 SPARSE 5-43% MEARLY ABSENT - Con- Maximum	
INSTREAM C quality: 3-Highest quality: 3-Highest quality: 3-Highest quality: 0 OVERHANGII 1 SHALLOWS (2 ROOTMATS (COMMENTS (CHANNEL MC SINUOSITY HIGH (4)	quality, 2-Moo unity in moderate or g. statie, well developed lankes [1] IN SLOW WATER; [1] IN SLOW WATER; [1] II) ORPHOLOGY Ches DEVELOPMENT EXCELLENT [7] GOOD [5] FARE [3]	device amounts, but not of inside amounts (e.g., very) and water with process of the process of	ry small amounts or if more contributed quality or in small amounts or if more contributed quality or in small amounts or in s	rmon of margir unts of highest saler, large saler large onel pools. ATERS [1] HATTES [1] DEBRIS [1]	Check ONE (0*2 & a EXTENSIVE 39 SA MODERATE 25-751 BPARSE 5-05% (1) HEARLY ABSENT Covered Maximum	

B EROSION D NONE/LUTTLE[3] MODERATE[2] HEAVY/SEVERE[1	RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN WIDTH RIPARIAN SAM [3] RIPARIAN SAM [3] RIPARIAN SAM [3]	☐ SHRUB OR OLD FIELD [2] ☐ [☐ [☐ [☐ [☐ [☐ [☐ [☐ [☐ [☐ [☐ [☐ [☐ [CONSERVATION TELLAGE (1)
5] POOL / GLIDE AN MAXIMUM DEPTH Check ONE (ONLY) > im [4] 0.1- <im 0.2-<0.4m="" 0.2m="" 0.4-0.7m="" <="" [1]="" [4]="" [6]<="" [7]="" th="" =""><th>D RIFFLE / RUN QUALITY CHANNEL WIDTH Check ONE (Or 2 & average) POOL WIDTH > REFFLE WIDTH PI POOL WIDTH > REFFLE WIDTH PI POOL WIDTH > REFFLE WIDTH PI</th><th>CURRENT VELOCITY Check ALL find apply TORRENTIAL [4] SLOW [4] VERY FAST [4] INTERSTITIAL [4] AST [1] INTERMITTENT [4] MODERATE [1] EDDIES [4]</th><th>Recreation Potential Primary Contact Secondary Contact</th></im>	D RIFFLE / RUN QUALITY CHANNEL WIDTH Check ONE (Or 2 & average) POOL WIDTH > REFFLE WIDTH PI POOL WIDTH > REFFLE WIDTH PI POOL WIDTH > REFFLE WIDTH PI	CURRENT VELOCITY Check ALL find apply TORRENTIAL [4] SLOW [4] VERY FAST [4] INTERSTITIAL [4] AST [1] INTERMITTENT [4] MODERATE [1] EDDIES [4]	Recreation Potential Primary Contact Secondary Contact
Comments		Indicate for reads - pools and riffes.	Maximum 8

indicate for functional rifl of riffle-obligate species: s must be large enough to support a population Check ONE (Or 2 & average) ONO REFFLE | mestions RIFFLE DEPTH **RUN DEPTH** RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS BEST AREAS > 10cm [2]
BEST AREAS > 10cm [1]
BEST AREAS < 5cm
[cmtric=0] MAXIMUM > Stem [2] STABLE (e.g., Cobble, Boulder)[2]
MAXIMUM < Stem [1] MOD. STABLE (e.g., Large Gravet) [1]
UNSTABLE (e.g., Fire Gravet, Sand; [6] □ HONE[2]
□ LOW [1]
□ MODERATE[0]
□ EXTENSIVE [-1] Comments %POOL:

6] GRADIENT (| ① , ① mml) URRY LOW-LOW (2-4)
DRAINAGE AREA SMODERATE (6-10)
(mt) URGH - VERY MIGH (18-4)

20 %GLIDE: 40 %RUN: %RIFFLE!

* ORIGIN DETERMINED FROM ILLIANIS GEOLOGICAL SURVEY, WAVKEGAN QUADRANGLO.

Reviewed By:____

PEBBLE COUNT FIELD DATA SHEET

SITE ID: NTC/7PCSD 66				DA	DATE: 20 12-60 3 - 2 9 (YYYY-MM-DD)							
			Grabs									
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10	
1	RF	30	25	18	15	30	50	40	35	1)	30	
2	G	0	8	40	50	80	45	25	35	35	12_	
3	RN	HP	18	23	20	5	28	22	4	30	13	
4	RN	14	12	//	9	18	40	35-	12	55	25	
5	Gı	56	0	0	10	6	7	AC	8	7	50	
6	ρ	HP	SC	HP	M	VF	SC	F	5C	SC	50	
7	RF	Μ	45	32	28	19	80	40	45	38	22	
, 8	6-	SC	F	C	15	19	10	16	65	20	22	
9	RF	VC	35	18	VC	30	21	12	8	- Chargeson	0	
10	RF	M	20	15	8	6	C	VC	8	4	10	

Abbreviations: Sill/Clay Sand - Very Fine Sand - Fine Sand - Medium Hardpan Clay -Bedrock - BR = SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder

= C = VC = SB = MB = LB

Feature Types:
Riffie = RF
Run = RN
Glide = G
Pool = RF = RN = G

After recording transects above transcribe data into table below. Usually done by data entry person.

Size Clas	3	Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062	4				:		from an reacures;	(10r an arres)
Sand	Very Fine	0.062-0.125	*							
	Fine	0.125-0.25								
	Medium	0.25-0.50			A25				pi	
	Coarse	0.50-1.0			V		*		2	
	Very Coarse	1.0-2.0								
Gravel	Very Fine	2-4							·	
	Fine	4-6								<u> </u>
		6-8								
	Medium	8 -12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128								:
	Large	128-192								
		192-256								
Boulder	Small	256-384					:			
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096					:			
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION				
S, BRANCH PETTZBONE CAEEK	NAVAL STATION GREAT LAKES				
STATION# NTC17PCSD67	Latitude 42.35	707			
PHOTO#	Longitude 087.84120				
INVESTIGATORS CB, BR, KS					
FORM COMPLETED BY	DATE	REASON FOR SURVEY			
∠B	03-29-2012				

13

FIELD DATA - PHYSICAL CHARACTERIZATION / WATER QUALITY

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse □ Forest □ Commercial □ Field/Pasture □ Industrial □ Agricultural □ Other Macuataky GAX □ Residential Local Watershed NPS Pollution □ No evidence □ Some potential sources ☑ Obvious sources	Local Water Erosion □ None □ Moderate ☑ Heavy Estimated Stream Width ② 1 m Estimated Stream Depth ☑ Riffle ② 10 m ☑ Run ○ 30 m ☑ Pool ○ 10 m Velocity ☑ 275 m/sec
	Canopy Cover ☐ Partly open ☑ Partly shaded ☐ Shaded High Water Mark <u>1.2</u> m	Estimated Reach Length 300 Fine Channelized Yes No Dam Present Yes No
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin ▼ Trees □ Shrubs □ Gra dominant species present □ ▷ € C 3 D V ● V §	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent ☐ Rooted submergent ☐ Floating Algae ☐ Attached Algae ☐ Rooted Submergent ☐ Attached Algae ☐ Comminant Species present ☐ Comminant Species present ☐ Comminant Species present ☐ Comminant Species Portion of the reach with vegetative cover 20	□ Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Paper fiber Sand Cher Looking at stones which are not deeply embedded, are the undersides black in color? Yes No
WATER QUALITY	Temperature 12.95 ° C Specific Conductance 1.42 ns/cm Dissolved Oxygen 15.15 pH 8.39 Turbidity 9.1 NTV WQ Instrument Used Harra	Water Odors Normal/None
	II	

FIELD DATA - BENTHIC MACROINVERTEBRATE SAMPLE

STREAM NAME S. BRANCH PETTEBONE CREEK	STATION # NTC 17825067				
Reference or test?					
FORM COMPLETED BY	DATE 03-21-2012 TIME 1510	REASON FOR SURVEY			

Indicate the percentage of each habitat type present
☐ Cobble 20 % ☐ Snags 45 % Prootwab - 5
□ Vegetated Banks%
☐ Submerged Macrophytes% ☐ Other(DGTRITUS)%
How were the samples collected? □ wading □ from bank □ from boat
Indicate the number of jabs/kicks taken in each habitat type.
□ Cobble □ Snags
□ Vegetated Banks □ Sand
☐ Submerged Macrophytes ☐ Other ()
WIDTH ZIOFT7 10 BOTTOM, 10 BANK
COARSE-IIII ENAGS-THIIII
DETRITUS-1 ROOTWAS-1
AJGHT BANK BUFFER RIPARJAN IS CLEARED AREA.

CHIDEFA

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

المستشافات المساك	data to the		
OUE!	SAM	155º	5 II
Mar I I Amer	~~~	** 1	
		The Continues of the Co	mandalist.

Stream & Location: 5	BRANCH PETTIBONG CREEK	RM.	DMM 03/29/08/201
NTCITPESO65		Full Name & Affiliation:	
River Code: -	- STORET#:	Lat/Long:	8
1] SUBSTRATE Cleak O	LYTwo substrate TYPE BOXES	Check ONE (728ewsge)
DESTRUCTION OF THE PARTY OF THE	% or note every type present OLREFFLE OTHER TYPES POOL!		QUALITY
D DELOR/SLARS [10]	[] [] HAROPAN [4]	CI LIMES TO ME: [1]	□HEAVY[2]
D BOULDER PI		□TELS [1] □WETLANDS [0]	MY DESCRIPTION SIDERAL OF THE
GRAVEL[7]		THARDPAN IS	Omerni liz.41
SAND [6]		DEANOSTONE (D) SO	DE DECTENSIVE (2)
□□ SEDROCK [5]	(Score natural substitute		MODERATE [-1] Massesser
- Par American Control (1997)	PES: 4 or more [2] studge from point-s	Cather Lit	□нонЕ[¶
Comments		COAL LINES [5]	
Z] INSTREAM COVER quality: 3-Highest quality in m damenter by that is statis, we undercut BANKS [1] OVERHANGING VEGE SHALLOWS (IN SLOW O ROOTMATS [1])	TATION [1] ROOTWADS [1]	medi amounts or il more common of ri- medi quality or in small amounts of his- toulders in deep or fast water, large or deep, well-defined, functional pools OXBONES, BACKMATERS [1 AQUATIC MACROPHYTES [LOGS OR WOODY DEBRIS	EXTENSIVE 979% [11] MODERATE 25-79% [7] SPARSE 5-25% [3]
T CUANTE MORE	LOGY Chack ONE in each category (Or 2		
	OPMENT CHANNELIZATIO		
Management of the Control of the Con	ELENT[7] [NONE [8]	☐ HIGH [3]	
□ MODERATE PI □ GOX		☐ MODERATE[2]	
DLOW[2] □ FAS □ NONE[1] □ POC	• •	NEKALU ☐ TOMIN	earl (C)
Comments			Animy [6]
EROSION HONE/LITTLE [3] MODERATE [2] HEAVY/SEVERE [1]	☑ MODERATE 19-66m [3] □ SH □ MARROW 5-16m [2] ☑ ☑ RE □ ☑ VERY HARROW < 5m [1] □ □ FE	FLOOD PLAIN QUALITY REST, SWAMP [3] RUB OR OLD FIELD [2] SIDENTIAL, PARK, NEW FIELD [1] [1] NCED PASTURE [1]	CONSERVATION TILLAGE [1] URBAN OR INDUSTRIAL [8] URBAN / CONSTRUCTION [8] Indicate preclamated land land (4) and 100m Aparian. Reparter.
Comments			
5] POOL / GLIDE AND	RIFFLE / RUN QUALITY		Recreation Potential
MAXIMUM DEPTH	CHANNEL WOTH Chack ONE (Or 2 & average)	CURRENT VELOCITY Check ALL first excels	Primary Contact
Check ONE (ONLY)		ORRENTIAL [4] [2] SLOW [1]	Secondary Contact
		ERY FAST [9] WITERSTITIAL	[-1] (Alle bounded and anomaly are back)
□ 6.4<0.7m [7] □ □ 6.2<0.4m [1]		AST [1] DEPORTED DECORES [1]	Pool / F
☐ < 6.2m [0]		Indicate for reach - pools and relies.	Current 6
Comments			4×m;;
of riffle-obligate sp REFFLE DEPTH	RUN DEPTH RIFFLE /	x 2 4 average) RUN SUBSTRATE RIFFLE	/RUN EMBEDDEDNESS
BEST AREAS > 10cm [2]	MAXIMUM > Stem [7] STABLE (a. MAXIMUM < Joenn [7] MOO. STAB		□ NONE[2]
BEST AREAS < 5cm [metric=0] Comments		(e.g., Fire Gravel, Sand) [6]	EXTENSIVE [4] Maximum
EJ GRADIENT 110.01	MH) - VERYLOW-LOW (2-4	%POOL:(②≦) %(LIDE:(40) Gradient
DRAINAGE AREA	☑ MODERATE (6-10)		EELE / TOTAL Maximum [10]
	ma) ☐ HICH - VERY HICH [1946]	MANUAL (10) AND	
			06/1606

* - ORIGIN DETERMINED FROM ILLINOIS STATE GEOLOGICAL SUNNET WALKEGAN QUADRANGLE AND SITE OBJENNATIONS.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: NTC17PCSD67					DATE: 20/2 - 0 3 - 29 (YYYY-MM-DD)							
			Grabs									
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10	
1	RF	50	9	15	20	100	47	120	C	1)	50	
2	RF	HP	43	32	36	55	16	26	33	12	44	
3	RF	HP	10	24	20	17	21	F	13	<u></u>	SC	
4	RN	HP	HP	13	29	32	27	<u>C</u>	4	13	41	
5	P	HP	HP	HP	HP	10	29	50	56	SC	50	
6	FN	HP	4	Μ	M	10	F	F	90	14	SC	
7	RF	SC	SC	4	C	28	23	55	7.	50	15	
8	61	50	SC	F	M	М	М	MC	C		M	
9	G	M	M	C	C	6	E	M	E	6	F	
10	P	10	F	8	F	М	45	F	F	SC	5c	

Abbreviations: Sill/Clay Sand – Very Fine Sand – Fine Sand – Medium Hardpan Clay – Bedrock – BR

= SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder = C = VC = SB = MB = LB

Feature Types:
Riffle = Ri
Run = Ri
Glide = G
Pool P = RF = RN = G

After recording transects above transcribe data into table below. Usually done by data entry person.

Size Clas		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Tota (for all sizes)
Silt/Cloy		< 0.062								(.u. an area)
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25							**********************	
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravel	Very Fine	2-4								
	Fine	4-6								
		6-8							***************************************	
	Medium	8-12							*****	
		12-16								
	Coarse	16-24								
	. A	24-32								
	Very Coarse	32-48								
	<i>p</i>	48-64								
Cobble	Small	64-96								
		96-128						***************************************		
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Sedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION	LOCATION			
SOUTH BRANCH PETTICONE CREEK	NAVAL PTATEIN GREAT LAKES				
STATION# NTC17PLSD68	Latitude 42,30544				
PHOTO#	Longitude 087.84154				
INVESTIGATORS CB. BR. KS					
FORM COMPLETED BY	DATE	REASON FOR SURVEY			
	3-29-2012				

FIELD DATA - PHYSICAL CHARACTERIZATION / WATER QUALITY

RIPARIAN ZONE/ INSTREAM FEATURES	Predominant Surrounding Landuse Forest	Local Water Erosion None Moderate Meavy Estimated Stream Width 2.2 m Estimated Stream Depth Riffle 3.05 m Run m Pool 3.65 m Velocity 1 1 7 5 m//sec Estimated Reach Length 3.00 m Channelized Yes No Dam Present Yes No
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the domin	nant species present asses □ Herbaceous
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent ☐ Rooted submergent ☐ Floating Algae ☐ Attached Algae ☐ HOLLE ☐ HO	□ Rooted floating □ Free Floating
SEDIMENT/ SUBSTRATE	Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Paper fiber Sand Other Looking at stones which are not deeply embedded, are the undersides black in color? Yes No
WATER QUALITY	Temperature_13.00 ° C Specific Conductance_1,40 moler Dissolved Oxygen_15.52 mole pH8.40 Turbidity_4.1_NTO WQ Instrument Usedk6 A 5 & A	Water Odors Normal/None
	1	

FIELD DATA - BENTHIC MACROINVERTEBRATE SAMPLE

STREAM NAME S. BR. PETTIBONE CREEK	STATION# NTCIT PUSDES		
Reference or test?			
FORM COMPLETED BY	DATE 03-29-2012	REASON FOR SURVEY	
CB	TIME		

HABITAT TYPES	Indicate the percentage of each habitat type present
0	☐ Cobble 30 % ☑ Snags 30 % UNDERCUT-10
	□ Vegetated Banks%
	☐ Submerged Macrophytes% ☐ Other(♣೦೦७८००) │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
SAMPLE COLLECTION	How were the samples collected? ☐ wading ☐ from bank ☐ from boat
	Indicate the number of jabs/kicks taken in each habitat type.
	□ Cobble □ Snags
	□ Vegetated Banks □ Sand
	☐ Submerged Macrophytes ☐ Other ()
GENERAL COMMENTS	BANK- COARSE-INI FENE-INI PETRITIS- WIOTH 210 FT -7 10 SUBSTRATE, 10 BANK. BANK- INAG-INI PROTECTION UNDERCUT - 11

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

The second secon	
The state of the s	

Stream & Location: 5	OUTH GRANCH PETTEBONE <	lagek	RM:	_ ,_Dete : 23 J 2	y 06201
NTC17 PC30 68	Scorers F	ull Name & Affiliation:	gsaal Sactor Cor		errag constant
River Code:		Let/Long:			No. of London
1] SUBSTRATE Check C	MC Y Pero substrate TYPE BOXES. ** or note every type present	C+aC	ME (Or 2 A	8. - -09)	
DEST TURES	CLASFLE OTHER TYPES POOL A	FFLE ORIGIN *		QUALITY	£.
BLOW /SLASS [10]	☐☐HAROPAN(4)	TRUSTONE (1)	8.8	□HEAVY[2] □MODERATE[-1]	Substrate
COSSIE[8]	二	■ WETLANDS [P]	SALT	DHOUMAT [d]	
GRAVEL[7] L		HARDPAN [6]	SODE OF	- Dextensive (2)	12
□ □ REOROCK B)	(Symana rate of states	STOR DAPAGE [1]		MODERATE [-1]	Manimum
NUMBER OF BEST TY	PES: 0 4 or more P] studge from point-ac	DENALE [-1]	•	□ HONE[4] □ HORMYT [4]	20
Comments		COAL FINES [2]			
	ETATION [I] ROOTWADS [I]		, ser pe poork [pes [1] [res [1] [Chick ONE (0 2 & a) EXTENSIVE P75% MODERATE 28-739 SPARSE 5-25% [HEARLY ABSENT - COV. Maximum	(A)
TO CUANNET MODEL	OLOGY Check ONE in each category (Or 2)	(and ()			
	LOPMENT CHANNELIZATION	SIABILITY	_		
	CELLENT (7) (MONE (8)	☐ HIGH [3] ☐ MODERATE [2]			
☐ MODERATE PI☐ GO ☐ LOW [2] ☐ FA	er [3] RECOVERING [3]	□ rowlal		Cum	_,
Comments	OR [1] BECENT OR NO RECOV			Marin	
4 BANK EROSION AL	ND RIPARIAN ZONE Chick ONE is sed	FLOOD PLAIN QUALI	r 2 per berk TY	Energy)	
EROSION		EST, SWAMP [3]		CONSERVATION TILL	
☐ MONE/LITTLE[3]		US OR OLD FIELD [7] IDENTIAL, PARK, NEW FIELD			
☐ ☐ HEAVY / SEVERE [1]		CED PASTURE [1] IN PASTURE, ROWCROP [6]		e predominant land use Om éparten — Répart	
Comments				A. i.e.	38 / 38
S POOL / GLIDE AND	RIFFLE / RUN QUALITY				
MAXIMUM DEPTH	CHANNEL WIDTH	CURRENT VELOCITY		Recreation Pote	
Check ONE (ONLY)	Check ONE (Or 2 & average) ☐ POOL WIDTH > REFLE WIDTH [2] ☐ TO	Check ALL fluid apply MODERNIAL [4] [2] SECW [1]		Primary Cont Secondary Cor	2000/07 L.BB
		RYPAST (1) DINTERSTI SYNT DINTERMIT		<u> </u>	
0.2-0.4m [7]		DERATE[I] DEDOES[η	.	
□<0.2m (B) Comments	######################################	indicate for reach - pools and r		Maxim	
of riffle-obligate s	onal riffles; Best areas must be la pecles: Check ONE (O	2 & marage)			
RIFFLE DEPTH	RUN DEPTH RIFFLE / R	UN SUBSTRATE RIF			38
BEST AREAS > 10cm [7]	☐ MAXIMUM < 50cm [1] ☐ MOD. STABL	E (e.g., Large Gravel) [1]		OM L) ONE [3]	
BEST MEAS . Sem		e.g., Fine Gravel, Sandy [0]		KODERATE [1]	
Comments				• • • • • • • • • • • • • • • • • • •	
6 GRADIENT 1 10.0	:mm) [] VERY LOW-LOW [2-4]	MPOOL 50	%GLIDI	E(40) cm	
DRAINAGE AREA	MODERATE (4-10) ☐ HIGH - VERY HIGH (10-0)	MRUN:	WRIFFLI		
	m-,		r. 17. 19. 121. 1217. 1		06/10/06

4-ORIGIN DETERMINED FROM ILLINOIS GEOLOGICAL SURVEY WANKEGAN QUADRANGLE.

PEBBLE COUNT FIELD DATA SHEET

SITE ID: NTC 17 PCSD 68					DATE: 2012 - 0 3 - 29 (YYYY-MM-DD)						
			Grabs								
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RN	50	56	50	Μ	M	55	27	9	10	SC
2	ρ	50	SC	Μ	9	47	23	36	50	50	90
3	RF	F	F	50	10	9	F	100	17	29	SC
4	0-	SC	C	7	56		22	5	19	8	12
5	G	SC	SC	50	C5	aM	<u> </u>	65	34	70	41
6	Ğ	SC	6	4	15	8	18	(8	-	6	
7	RN	C	C	50	22	18	20	30	MC	MC	100
8	P	Sc	50	F	F	50	50	Sc	SC	SZ	00
9	P	50	50	50	Sc	Sc	F		2	12	20
10	P	I	55	15	20	25	<i>C</i> 5	12	ふ	Sc	Sc

CS/CM CUBBLES MED/SMAL

Abbreviations: Silt/Clay Sand - Very Fine Sand - Fine Sand - Medium Hardpan Clay -Bedrock - BR

= SC = VF = F = M = HP = BR

= C = VC = SB = MB = LB Sand - Coarse Sand - Very Small Boulder Medium Large Boulder

Feature Types:
Riffle = RF
Run = RN
Glide = G
Pool • Riffle Run Glide Pool

After recording transects above transcribe data into table below. Usually done by data entry person.

Size Clas	\$	Size (mm)	Feature	Number	Feature	Number	Τ	г		
		J	7686076	Rumber	resture	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Clay		< 0.062								
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25								
	Medium	0.25-0.50								
	Coarse	0.50-1.0			V.					
	Very Coarse	1.0-2.0								
Gravei	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coerse	16-24								
		24-32								
	Very Coarse	32-48								
		48-64								
Cobble	Small	64-96								
		96-128								
	Large	128-192							·	
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

FIELD DATA - LOCATION AND CLIMATE INFORMATION

STREAM NAME	LOCATION				
UT TO SOUTH BRANCH PETTIBONE CR.	NAVAL STATION GREAT LONE ES				
STATION# NTCIT PCSD69	Latitude 42.307 13				
PHOTO#	Longitude 037.84286				
INVESTIGATORS CB, BR, K 5					
FORM COMPLETED BY	DATE	REASON FOR SURVEY			
CB	03-24-2012				

FIELD DATA - PHYSICAL CHARACTERIZATION / WATER QUALITY

Predominant Surrounding Landuse Forest	Estimated Stream Depth RRIffle 0.05 m Run m Pool 0.70 m Velocity 1/2-1/35 m/sec		
Indicate the dominant type and record the doming ↑Trees □ Shrubs □ Gra	nant species present		
Indicate the dominant type and record the dominant species present □ Rooted submergent □ Attached Algae dominant species present □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	□ Rooted floating □ Free Floating		
Odors Normal Sewage Petroleum Chemical Anaerobic None Other Oils Absent Slight Moderate Profuse	Deposits □ Sludge □ Sawdust □ Paper fiber ☑ Sand □ Relict shells □ Other □ Looking at stones which are not deeply embedded, are the undersides black in color? □ Yes ☑ No		
Temperature_\\\\ \cdot \	Water Odors Normal/None		
	Forest		

FIELD DATA - BENTHIC MACROINVERTEBRATE SAMPLE

STREAM NAME UT TO SOUTH BRANCH PETTERNE	STATION# NTC17PCSD69						
Reference or test? TEST							
FORM COMPLETED BY	DATE 63-29-2012	REASON FOR SURVEY					
LG	TIME 1350						

HABITAT TYPES	Indicate the percentage of each habitat type present								
	☐ Cobble 30 % ☐ Snags 40 % RODTLAD - 10								
	□ Vegetated Banks%								
	□ Submerged Macrophytes% □ Other(TETAITUS) 10 %								
SAMPLE COLLECTION	How were the samples collected? ☐ wading ☐ from bank ☐ from boat								
	Indicate the number of jabs/kicks taken in each habitat type.								
	□ Cobble □ Snags								
	□ Vegetated Banks □ Sand								
	☐ Submerged Macrophytes ☐ Other (
GENERAL COMMENTS	BOTTON. BOTTON. CORNE-ITHI FINE-II DETRITUS-II VERY SMALL, LOW FLOW, UNSTABLE, ERODED BANKS								

ChicEFA

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

QHEI Score: 52			· · · · · · · · · · · · · · · · · · ·
QHEI Score: 52			. Japanese and the second
QHEI Score: 22	Taken Service Commission	Assessed to 3.	
WHEI SCOIP.	<i>OUEI</i>	-	**************************************
	unci	JULI	FREE No. 100 B
			The state of the s

Stream & Location:	IT TO SOUTH GRANCH	PETTIBONE CH	Keek Ai	d: Date: C	3/29/06 201
NTCITPCS069		Scorers Full Nan	ne & Affiliation:		
River Code: -	- STORET #:	Leve	29; <u> </u>	/8	Office section of
BEST TYPES BLOR /SLADS [10] BOULDER B] COBBLE [8] COBBLE [8] SAND [9] SEDROCK B] NUMBER OF BEST TO Comments		PES POOL REFFLE	CRIGIN X LIMESTONE [1] TILLS [1] WETLANDS [5] HARDPAN [6] SANOSTONE [6] RIPMAP [6] LACUSTURENE [6] SHALE [-1] COAL FINES [-2]	OUAL OUAL HEAVY SET MICOSEU FREE(1) DOG EXTENS NORMAL HONE [1]	2) Substrate (0) (12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15
	moderate or greater amounts in mel developed potwed in deep ([1] POOLS (SETATION [1] ROOTW	Ç very hirje bruiden / and water ordens, w > 70cm [2] ○ CX AOS [1] ○ AO		Charlone (C) EXTENSIVE [7] MICOENATE [1] BPARSE 5- [1] HEARLY AS	52.4 [a] 52.52 [b] 54.52 [tt]
SINUOSITY DEVE	CELLENT [7] HONE 10] COD [19] RECOVER	ELIZATION ED [4]	STABILITY HIGH [3] MODERATE [2] LOW [1]		Single 10
EROSION ONE/UTTLE[3] OMODERATE[2]	ND RIPARIAN ZONE CHIP RIPARIAN WIDTH WIDE > 50m [4] WIDE> 50m [4] WIDENATE 19-50m [3] NARROW 5-10m [2] WERY NARROW < 5m [**]	FLOO POREST, SW SHRUB OR C	O PLAIN QUALITY KAP [3] X.D FIELD [2] L, PARK, NEW FIELD [1]	CONSERVATE	OUSTRIAL (II) STRUCTION (II)
MAXIMUM DEPTH Chuck ONE (ONLY) > 1m [6] 5.7<1m [4]	CHANNEL WIDTH CHANNEL WIDTH Check ONE (Or 2 & avera POOL WIDTH> REFFLE WID POOL WIDTH> REFFLE WID POOL WIDTH> REFFLE WID	CURR (pe) Che TH (p) TOWNENTIV TH (i) VERY FAST TH (ii) FAST (i) MODERATI	RENT VELOCITY CAL STAN apply AL [4] SELOW [1] [1] INTERSITTIA E[1] EDDNES [1] Franch - pocks and rather	Primary Secondar (deb monds	Potential Contact ry Contact
of riffle-obligate s RFFLE DEPTH BEST AREAS > 10cm [2] BEST AREAS > 10cm [1] BEST AREAS < 5cm [mitric=0] Comments	RUN DEPTH MAXIMUM > 50cm [7] MAXIMUM < 50cm [7] NO RUN 5	heck ONE (Or 2 & aver RIFFLE / RUN SU STABLE (e.g., Cobble MOD. STABLE (e.g., I UNSTABLE (e.g., Fre	age) BSTRATE RIFFLI , Boulder)[2] ,arge Gravel) [1]		Rete/(
BRAINAGE AREA	(Ami) VERYLOW-LOW D NO OERATE (6-10) HIGH - VERY HIGH			GLIDE: 10 RIFFLE: 30	Gradient 10 Maximum 10

*- ORIGIN DETERATIVED FROM ILLINOIS STATE GEOLOGICAL SURVEY WALKEGAN QUADRANGLE.

PEBBLE COUNT FIELD DATA SHEET

SITE ID:	DA	DATE: 2012 - 03 - 29 (YYYY-MM-DD)									
						Gr	abs				
Transect	Feature Type	1	2	3	4	5	6	7	8	9	10
1	RF	32	25	6	40	33	20	30	15	33	HP
2	RF	27	17	25	25	30	21	4	16	63	50
3	6	HP	HP	HP	31	42	33	23	The same of	22	10
4	ρ	30	38	35	64	2	28	9	34	C	C
5	RF	16	28	24	47	33	29	35	C	C	R
6	Ġ	56	SC	SC	30	C	<i>A</i> A	м.	18	20	C
7	RF	42	45	45	42	40	40	40	32	56	SC
8	P	30	40	110	F	50	HP	10	a	Μ	SC
9	Gı	50	15	CO	<i>C</i>	C	100	30	22	0	9
10	RF	MC	MC	75	40	VC	8	6	22	45	55

MC= ned cobbble

Abbreviations: Silt/Clay Sand – Very Fine Sand – Fine Sand – Medium Hardpan Clay – Bedrock – BR

= SC = VF = F = M = HP = BR

Sand – Coarse Sand – Very Small Boulder Medium Large Boulder = C = VC = SB = MB = LB

Feature Types:

Riffle Run Glide Pool = RF = RN = G After recording transects above transcribe data into table below. Usually done by data entry person.

Size Clas		Size (mm)	Feature	Number	Feature	Number	Feature	Number	Total (for all features)	Cumulative Total (for all sizes)
Silt/Cloy		< 0.062								
Sand	Very Fine	0.062-0.125								
	Fine	0.125-0.25								
	Medium	0.25-0.50								
	Coarse	0.50-1.0								
	Very Coarse	1.0-2.0								
Gravei	Very Fine	2-4								
	Fine	4-6								
		6-8								
	Medium	8-12								
		12-16								
	Coarse	16-24								
		24-32								
	Very Coarse	32-48	***************************************							
		48-64								
Cobble	Small	64-96								****
		96-128								
	Large	128-192								
		192-256								
Boulder	Small	256-384								
		384-512								
	Medium	512-1024								
	Large - Very Large	1024-4096								
Bedrock		> 4096								

Appendix B. Site Photos

Figure C-1. Test site SD 53 looking upstream (left photo) and downstream (right).

Figure C-2. Test site SD 54 looking upstream (left photo) and downstream (right).

Figure C-3. Tributary test site SD 58 looking upstream (left photo) and downstream (right).

Figure C-4. Test site SD 59 looking upstream (left photo) and downstream (right).

Figure C-5. Test site SD 60 looking upstream (left photo) and downstream (right).

Figure C-6. Test site SD 61 looking upstream (left photo) and downstream (right).

Figure C-7. Test site SD 62 looking upstream (left photo) and downstream (right).

Figure C-8. Test site SD 63 looking upstream (left photo) and downstream (right).

Figure C-9. Test site SD 64 looking upstream (left photo) and downstream (right).

Figure C-10. Reference site SD 65 looking upstream (left photo) and downstream (right).

Figure C-11. Reference site SD 66 looking upstream (left photo) and downstream (right).

Figure C-12. Reference site SD 67 looking upstream (left photo) and downstream (right).

Figure C-13. Reference site SD 68 looking upstream (left photo) and downstream (right).

Figure C-14. Tributary reference site SD 69 looking upstream (left photo) and downstream (right).

Appendix C

Taxonomic Data Quality Control Report

Taxonomic Data Quality Control Report

Report completed (date)	April 27, 2012
Tetra Tech project number	100-BLT-T28932-01
Project name	Sediment Characterization Investigation in
	Support of the Feasibility Study for Site 17 -
	Pettibone Creek
Client	Naval Facilities Engineering Command-Midwest
	(NAVFAC), Naval Station-Great Lakes (Tetra Tech
	NUS, Pittsburgh)
Client contact	Mr. Robert Davis ([412] 921-7251), Mr. Aaron
	Bernhardt ([412] 921-8433)
Primary taxonomist(s)	Todd Askegaard (Aquatic Resources Center)
QC taxonomist(s)	Mike Winnell (Freshwater Benthic Services)
QC analyst	J. Stribling

Table of contents

TEST CONDITIONS AND NARRATIVE SUMMARY	page 2
HIERARCHICAL TARGET LEVELS	• •
SUMMARY STATISTICS, by sample lot	. •
SUMMARY STATISTICS, by individual samples	
TAXON BY TAXON COMPARISONS, within samples	. •
LIST OF CORRECTIVE ACTION OR OTHER ISSUES	. •

<u>Prepared by</u>: Tetra Tech, Inc., Center for Ecological Sciences, 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 (with questions, contact James Stribling [410-356-8993], or <u>james.stribling@tetratech.com</u>)

Taxonomic Data Quality Control Report

Report completed (date) Tetra Tech project numberApril 27, 2012
100-BLT-T28932-01

Project name Sediment Characterization Investigation in Support of the

Feasibility Study for Site 17 - Pettibone Creek

Client Naval Facilities Engineering Command-Midwest (NAVFAC),

Naval Station-Great Lakes (Tetra Tech-NUS, Pittsburgh)

Client contact Mr. Robert Davis (Tt) ([412] 921-7251), Mr. Aaron Bernhardt (Tt)

([412] 921-8433)

Primary taxonomist(s) Todd Askegaard (Aquatic Resources Center)
QC taxonomist(s) Mike Winnell (Freshwater Benthic Services)

QC analyst J. Stribling

Test conditions and narrative summary – Three (3) benthic macroinvertebrate samples were randomly selected from the full sample lot of 14. These results represent a direct comparison of identification results by independent taxonomists in separate laboratories; all primary identifications (n=14 samples) were done by Aquatic Resources Center (ARC); the QC re-identifications were done on the three samples by Freshwater Benthic Services (FBS). Summary values for means and standard deviations are based on 3 samples (n=3), and thus, are representative of the overall dataset. The mean percent taxonomic disagreement (PTD) is 4.4, substantially better than the typical 15% measurement quality objective (MQO) used for many programs; and the mean percent difference in enumeration (PDE) was 0.8, as compared to the programmatic MQO of 5%. Overall, the comparisons were excellent, with substantial consistency (good precision, low PTD). No (zero) samples exceeded the PTD_{MQO} or PDE_{MQO}. The overall data quality of the dataset is acceptable for additional analyses.

Standard operating procedures (SOP) for identifications documented and provided to all primary and QC taxonomists? Yes, as part of the scope of work.

Additional comments: None.

Hierarchical target levels

Identify all benthic macroinvertebrates to the lowest practical taxonomic level. The target levels are at least genus for insects and non-sphaeriid/non-unionid bivalves; identify the remaining macroinvertebrates as Hirudinea, Oligochaeta, Turbellaria, Unionidae, Cambariidae, and Sphaeriidae.

SUMMARY STATISTICS (by sample lot)

Number of samples in lot	14
Number of samples tested	3
Percent of sample lot	21.4%
Percent taxonomic disagreement (PTD)	
Average	4.4
Standard deviation	2.1
Measurement quality objective	15
No. samples exceeding	0
Percent difference in enumeration (PDE)	
Average	0.8
Standard deviation	0.6
Measurement quality objective	5
No. samples exceeding	0
Percent taxonomic completeness (PTC_absolute difference)	
Average	1.6
Standard deviation	2.2
Measurement quality objective	none specified
No. samples exceeding	not applicable

The following provides definitions for abbreviations and column headers in tables found in subsequent pages:

pages.		
Column	Abbreviations	Definition
Α	no_ind_T1	number of individuals counted by primary taxonomist
В	no_ind_T2	number of individuals counted by QC taxonomist
C	Matches	number of agreements between the two taxonomists
D	PDE	percent difference in enumeration
E	PTD	percent taxonomic disagreement
F	Target_T1	number of individuals identified to target level, primary taxonomist
G	Target_T2	number of individuals identified to target level, QC taxonomist
Н	PTC_T1	percent taxonomic completeness, primary taxonomist
I	PTC_T2	percent taxonomic completeness, QC taxonomist
J	PTC (abs diff)	percent taxonomic completeness (absolute difference)
K	Diff_Strt	number of straight taxonomic disagreements
L	Diff_Hier	number of hierarchical differences
M	Diff_Miss	number of missing specimens

SUMMARY STATISTICS (by individual samples)

Sample ID	Α	В	С	D	Ε	F	G	Н	ı	J
SD59	286	292	284	1	2.7	284	289	99.3	99	0.3
SD61	270	269	252	0.2	6.7	268	256	99.3	95.2	4.1
SD62	262	269	259	1.3	3.7	260	266	99.2	98.9	0.3

TAXON BY TAXON COMPARISONS (within samples)

Sample ID	Taxon	Α	В	С	K	L	M
SD59	Acanthocephala	0	2	0	0	0	2
SD59	Nematoda	1	1	1	0	0	0
SD59	Sperchon	9	9	9	0	0	0
SD59	Oligochaeta	164	168	164	0	0	4
SD59	Prostoma	1	1	1	0	0	0
SD59	Physa	0	1	0	0	1	0
SD59	Physidae	1	0	0	0	0	0
SD59	Calopteryx	4	4	4	0	0	0
SD59	Girardia	0	12	12	0	0	0
SD59	Dugesiidae	16	4	4	0	0	0
SD59	Crangonyx	1	1	1	0	0	0
SD59	Caecidotea	12	12	12	0	0	0
SD59	Chaetocladius	1	1	1	0	0	0
SD59	Chironomus	4	5	4	1	0	0
SD59	Cricotopus/Orthocladius	13	12	12	0	0	0
SD59	Cryptochironomus	7	7	7	0	0	0
SD59	Limnophyes	4	4	4	0	0	0
SD59	Orthocladius	0	1	1	0	0	0
SD59	Phaenopsectra	2	2	2	0	0	0
SD59	Polypedilum	24	23	23	0	0	0
SD59	Thienemannimyia genus gr.	15	15	15	0	0	0
SD59	Neoplasta	2	2	2	0	0	0
SD59	Hydropsyche	5	5	5	0	0	0
SD61	Caecidotea	22	25	22	0	0	0
SD61	Calopteryx	18	11	11	0	0	0
SD61	Calopterygidae	0	7	0	0	7	0
SD61	Bezzia/Palpomyia	1	1	1	0	0	0
SD61	Chaetocladius	1	1	1	0	0	0
SD61	Chironomidae	0	1	0	0	0	1
SD61	Chironomus	4	4	4	0	0	0
SD61	Cricotopus/Orthocladius	49	44	44	0	0	0
SD61	Cryptochironomus	4	4	4	0	0	0
SD61	Limnophyes	1	1	1	0	0	0
SD61	Orthocladiini	0	3	0	0	3	0
SD61	Phaenopsectra	4	4	4	0	0	0

Sample ID	Taxon	Α	В	С	K	L	M
SD61	Polypedilum	14	14	14	0	0	0
SD61	Stenochironomus	2	2	2	0	0	0
SD61	Thienemannimyia genus gr.	25	25	25	0	0	0
SD61	Crangonyx	20	20	20	0	0	0
SD61	Girardia	0	22	22	0	0	1
SD61	Dugesiidae	27	4	4	0	0	0
SD61	Hemerodromia	1	1	1	0	0	0
SD61	Neoplasta	1	1	1	0	0	0
SD61	Cheumatopsyche	1	3	1	2	0	0
SD61	Hydropsyche	7	6	6	0	0	0
SD61	Hydropsychidae	1	0	0	0	1	0
SD61	Pericoma	1	0	1	0	0	0
SD61				0		0	
	Pericoma/Telmatoscopus	0	1		0		0
SD61	Sperchon	23	23	23	0	0	0
SD61	Prostoma	2	2	2	0	0	0
SD61	Tipula	1	1	1	0	0	0
SD61	Acanthocephala	1	2	1	0	0	1
SD61	Oligochaeta	39	36	36	0	0	3
SD62	Acanthocephala	2	2	2	0	0	0
SD62	Sperchon	6	6	6	0	0	0
SD62	Pisidium	1	1	1	0	0	0
SD62	Oligochaeta	122	126	122	0	0	4
SD62	Calopteryx	4	3	3	0	1	0
SD62	Girardia	0	5	2	0	0	3
SD62	Dugesiidae	6	4	4	0	0	0
SD62	Crangonyx	2	2	2	0	0	0
SD62	Caecidotea	8	8	8	0	0	0
SD62	Stenelmis	5	5	5	0	0	0
SD62	Dasyhelea	1	1	1	0	0	0
SD62	Chaetocladius	2	2	2	0	0	0
SD62	Chironomus	3	2	2	1	0	0
SD62	Cricotopus/Orthocladius	46	39	39	0	0	0
SD62	Cryptochironomus	2	2	2	0	0	0
SD62	Limnophyes	5	5	5	0	0	0
SD62	Orthocladius	0	7	7	0	0	0
SD62	Paratanytarsus	6	5	5	0	0	0
SD62	Paratendipes	1	1	1	0	0	0
SD62	Phaenopsectra	4	4	4	0	0	0
SD62	Polypedilum	4	5	4	0	0	0
SD62	Psectrocladius	1	1	1	0	0	0
SD62	Rheotanytarsus	0	1	0	1	0	0
SD62	Tanytarsini	1	1	1	0	0	0
SD62	Tanytarsus	6	6	6	0	0	0
SD62	Thienemannimyia genus gr.	17	17	17	0	0	0
SD62	Zavrelimyia	1	1	1	0	0	0
3502		-	_				

Sample ID	Taxon	Α	В	С	K	L	M
SD62	Hemerodromia	3	3	3	0	0	0
SD62	Neoplasta	2	2	2	0	0	0
SD62	Calopterygidae	0	1	0	0	1	0
SD62	Hydropsyche	1	1	1	0	0	0

List of corrective actions or other issues

1. No substantial corrective actions necessary or required

Appendix D.Benthic macroinvertebrate sample processing information and data.

Table A-1. Sample processing log: sorting and subsampling results.

<u>Sort</u>		Grids o	ut of 30		Numbe	rs of indivi	duals		
Sample Id	Date	Ana- lyst	Tray 1	Tray 2	Oligo- chaeta	Chiro- nomidae	Mollusca	Crustacea	Others
SD53	4-Apr	twa	5		89	181	2	6	23
SD54	4-Apr	rth	4		65	145	0	3	65
SD58	3-Apr	twa	7		242	32	0	4	46
SD59	2-Apr	rth	4	28	171	68	1	14	47
SD60	4-Apr	rth	10		100	99	1	25	54
SD61	3-Apr	rth	10		28	93	0	118	89
SD62	2-Apr	twa	7		128	100	1	10	31
SD63	1-Apr	rth	4		201	81	0	27	37
SD64	1-Apr	twa	4	12	216	60	0	5	16
SD65	2-Apr	twa	4	16	156	88	0	9	30
SD66	2-Apr	rth	4		188	91	16	13	34
SD67	31-Mar	rth	4	22	105	91	22	14	36
SD68	31-Mar	twa	4	14	56	167	8	12	30
SD69	1-Apr	rth	4	24	187	33	2	52	20

Table A-2. Taxonomic identification results: Taxa lists, by sampling station. Life stage is only noted for those organisms that have both larval (L) and adult (A) aquatic stages.

Taxon	No.	Stage
SampleID: SD53. RefTest	: Test. Sample Dat	e: 3/28/2012
Gyraulus	1	
Physidae	1	
Caecidotea	7	
Prostoma	2	
Dugesiidae	9	
Boyeria	2	
Calopteryx	4	
Noctuidae	1	
Bezzia/Palpomyia	1	
Pericoma	1	
Polypedilum	8	
Cryptochironomus	8	
Paratanytarsus	4	

Taxon	No.	Stage
Limnophyes	4	
Cricotopus	92	
Eukiefferiella	2	
Thienemannimyia gr.	5	
Cricotopus/Orthocladius	52	
Zavrelimyia	2	
Chironomus	4	
Nais	17	
Tubificinae:bifid chaetae	25	
Tubificinae:hair+pectinate	23	
chaetae		
Enchytraeidae	5	
Quistadrilus	3	
Potamothrix	2	
Limnodrilus	14	
SampleID: SD54. RefTest	_	e Date: 3/28/2012
Caecidotea	3	
Nematoda	2	
Prostoma	4	
Dugesiidae	25	
Sperchon	22	
Boyeria	3	
Calopteryx	5	
Hydropsyche	1	
Curculionidae	1	L
Polypedilum	18	
Cricotopus/Orthocladius	44	
Limnophyes	2	
Phaenopsectra	4	
Chironomus	7	
Cryptochironomus	5	
Cricotopus	55	
Thienemannimyia gr.	8	
Tanytarsini	1	
Paratanytarsus	1	
Zavrelimyia	1	
Psychodidae	1	
Nais	13	
Paranais	1	
Tubificinae:hair+pectinate	2	
chaetae		
Enchytraeidae	12	

Taxon	No.	Stage
Pristina	1	
Limnodrilus	27	
Potamothrix	3	
Quistadrilus	1	
Tubificinae:bifid chaetae	2	
SampleID: SD58. RefTest: To	est Trib. Samp	le Date: 3/29/2012
Crangonyx	1	
Caecidotea	3	
Prostoma	1	
Dugesiidae	29	
Calopteryx	4	
Erioptera	1	
Cricotopus/Orthocladius	7	
Polypedilum	8	
Limnophyes	2	
Phaenopsectra	1	
Stenochironomus	10	
Thienemannimyia gr.	4	
Nais	169	
Enchytraeidae	17	
Tubificinae:hair+pectinate chaetae	6	
Limnodrilus	17	
Tubificinae:bifid chaetae	23	
Potamothrix	4	
Tubifex	1	
SampleID: SD59. RefTest: Te	est. Sample Da	te: 3/28/2012
Physidae	1	
Crangonyx	1	
Caecidotea	12	
Nematoda	1	
Prostoma	1	
Dugesiidae	16	
Sperchon	9	
Calopteryx	4	
Hydropsyche	5	
Neoplasta	2	
Polypedilum	24	
Limnophyes	4	
Phaenopsectra	2	
Cryptochironomus	7	
Cricotopus/Orthocladius	9	

Taxon	No.	Stage
Thienemannimyia gr.	15	
Chironomus	4	
Cricotopus	4	
Chaetocladius	1	
Paranais	79	
Nais	42	
Pristina	1	
Tubificinae:bifid chaetae	11	
Enchytraeidae	9	
Tubificinae:hair+pectinate	10	
chaetae		
Potamothrix	1	
Limnodrilus	8	
Lumbriculidae	1	
Tubifex	1	
Quistadrilus	1	
SampleID: SD60. RefTest: To	_	te: 3/28/2012
Lymnaeidae	1	
Crangonyx	4	
Caecidotea	21	
Nematoda	1	
Prostoma	2	
Dugesiidae	16	
Sperchon	6	
Calopteryx	5	
Hydropsyche	14	
Tipula	1	
Polypedilum	20	
Cricotopus/Orthocladius	24	
Sciaridae	1	
Tanytarsus	1	
Chironomus	7	
Cryptochironomus	16	
Cricotopus	5	
Phaenopsectra	2	
Eukiefferiella	1	
Thienemannimyia gr.	22	
Limnophyes	1	
Paratanytarsus	1	
Chironominae	1	
Paranais	22	
Nais	32	

Taxon	No.	Stage
Tubificinae:hair+pectinate	4	<u> </u>
chaetae Enghytropidea	4	
Enchytraeidae	-	
Tubificinae:bifid chaetae	12	
Acanthocephala	4	
Quistadrilus	1	
Limnodrilus	4	
Bothrioneurum	1	
SampleID: SD61. RefTest: 7	_	te: 3/28/2012
Crangonyx	20	
Caecidotea	22	
Prostoma	2	
Dugesiidae	27	
Sperchon	23	
Calopteryx	18	
Cheumatopsyche	1	
Hydropsyche	7	
Hydropsychidae	1	
Bezzia/Palpomyia	1	
Hemerodromia	1	
Neoplasta	1	
Tipula	1	
Pericoma	1	
Polypedilum	14	
Chaetocladius	1	
Phaenopsectra	4	
Cryptochironomus	4	
Stenochironomus	2	
Cricotopus/Orthocladius	47	
Cricotopus	2	
Chironomus	4	
Thienemannimyia gr.	25	
Limnophyes	1	
Paranais	5	
Tubificinae:bifid chaetae	6	
Nais	10	
Tubificinae:hair+pectinate	3	
chaetae	3	
Enchytraeidae	8	
Acanthocephala	1	
Limnodrilus	5	
Potamothrix	1	

Polypedilum Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 1 Prostoma 2	Taxon	No.	Stage
Pisidium 1 Crangonyx 2 Caecidotea 8 Dugesiidae 6 Sperchon 6 Calopteryx 4 Hydropsyche 1 Stenelmis 5 Alemerodromia 3 Neoplasta 2 Cranjurasus 6 Phaenopsectra 4 Polopedilum 4 Paranetnedipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaecidelius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus/Orthocladius 1 Thienemannimyia gr. 17	Quistadrilus	1	
Crangonyx 2 Caecidotea 8 Dugesiidae 6 Sperchon 6 Calopteryx 4 Hydropsyche 1 Stenelmis 5 Alemany 6 Pharendromia 3 Neoplasta 2 Parantary 6 Phaenopsectra 4 Polypedilum 4 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratanytarsus 1 Cryptochironomus 2 Cricotopus 38 Limnophyes 5 Cricotopus/Orthocladius 1 Thienemannimyia gr. 17 Z	SampleID: SD62. RefTest: T	est. Sample	Date: 3/27/2012
Caecidotea 8 Dugesiidae 6 Sperchon 6 Calopteryx 4 Hydropsyche 1 Stenelmis 5 Stenelmis 5 Hemerodromia 3 Neoplasta 2 Tanytarsus 6 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2	Pisidium	1	
Dugesiidae 6 Sperchon 6 Calopteryx 4 Hydropsyche 1 Stenelmis 5 3L, 2A Hemerodromia 3 Neoplasta 2 Tanytarsus 6 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala	Crangonyx	2	
Sperchon 6 Calopteryx 4 Hydropsyche 1 Stenelmis 5 3L, 2A Hemerodromia 3 Neoplasta 2 Tanytarsus 6 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Crirotonomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Tes	Caecidotea	8	
Calopteryx 4 Hydropsyche 1 Stenelmis 5 Stenelmis 5 Hemerodromia 3 Neoplasta 2 Tanytarsus 6 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 C	Dugesiidae	6	
Hydropsyche Stenelmis Sten	Sperchon	6	
Stenelmis 5 3L, 2A Hemerodromia 3 Neoplasta 2 Tanytarsus 6 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24	Calopteryx	4	
Hemerodromia 3	Hydropsyche	1	
Neoplasta 2 Tanytarsus 6 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Stenelmis	5	3L, 2A
Tanytarsus 6 Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Hemerodromia	3	
Paratanytarsus 6 Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Neoplasta	2	
Phaenopsectra 4 Polypedilum 4 Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Tanytarsus	6	
Polypedilum Paratendipes 1 Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 1 Prostoma 2	Paratanytarsus	6	
Paratendipes Chironomus 3 Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 1 Prostoma 2	Phaenopsectra	4	
Chironomus Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Polypedilum	4	
Dasyhelea 1 Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Paratendipes	1	
Cryptochironomus 2 Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Chironomus	3	
Chaetocladius 2 Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Dasyhelea	1	
Cricotopus/Orthocladius 38 Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Cryptochironomus	2	
Limnophyes 5 Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Chaetocladius	2	
Cricotopus 8 Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Cricotopus/Orthocladius	38	
Psectrocladius 1 Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Limnophyes	5	
Thienemannimyia gr. 17 Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Cricotopus	8	
Zavrelimyia 1 Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Psectrocladius	1	
Tanytarsini 1 Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Thienemannimyia gr.	17	
Nais 95 Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Zavrelimyia	1	
Enchytraeidae 11 Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Tanytarsini	1	
Paranais 1 Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Nais	95	
Tubificinae:bifid chaetae 7 Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Enchytraeidae	11	
Tubifex 1 Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Paranais	1	
Limnodrilus 7 Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Tubificinae:bifid chaetae	7	
Acanthocephala 2 SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Tubifex	1	
SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Limnodrilus	7	
SampleID: SD63. RefTest: Test. Sample Date: 3/27/2012 Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	Acanthocephala	2	
Crangonyctidae 1 Caecidotea 24 Nematoda 1 Prostoma 2	-	est. Sample	Date: 3/27/2012
Caecidotea 24 Nematoda 1 Prostoma 2			
Nematoda 1 Prostoma 2	• •	24	
Prostoma 2		1	
Dugesiidae 10		2	
	Dugesiidae	10	

Тоггот	No	C4a aa
Taxon	No.	Stage
Sperchon	2	
Boyeria	1	
Calopteryx	5	
Cheumatopsyche	1	
Hydropsyche	1	
Stenelmis	9	L
Hemerodromia	1	
Tipula	1	
Polypedilum	2	
Paratendipes	1	
Phaenopsectra	4	
Cryptochironomus	8	
Chironomus	1	
Paratanytarsus	9	
Cricotopus/Orthocladius	28	
Cricotopus	6	
Diamesa	1	
Psectrocladius	2	
Stictochironomus	1	
Tanypodinae	1	
Thienemannimyia gr.	13	
Orthocladiinae	1	
Tanytarsus	1	
Chaetocladius	1	
Nais	140	
Paranais	8	
Tubificinae:hair+pectinate	2	
chaetae		
Limnodrilus	2	
Enchytraeidae	6	
Tubificinae:bifid chaetae	4	
SampleID: SD64. RefTest: T	-	Date: 3/27/2012
Crangonyx	1	
Caecidotea	4	
Prostoma	1	
Dugesiidae	3	
Calopteryx	4	
Cheumatopsyche	1	
Hydropsyche	3	
Hydropsychidae	2	
Stenelmis	1	L
Tanytarsus	4	

Taxon	No.	Stage
Paratanytarsus	3	
Polypedilum	5	
Phaenopsectra	9	
Paratendipes	1	
Cryptochironomus	5	
Chironomus	4	
Cricotopus	2	
Cricotopus/Orthocladius	10	
Stenochironomus	1	
Diamesa	2	
Stictochironomus	3	
Thienemannimyia gr.	8	
Zavrelimyia	1	
Chironominae	1	
Nais	156	
Tubificinae:bifid chaetae	17	
Limnodrilus	19	
Paranais	10	
Enchytraeidae	4	
Tubificinae:hair+pectinate	4	
chaetae	•	2/20/2012
SampleID: SD65. RefTest: Re Caecidotea	et. Sample 1 9	Date: 3/29/2012
	4	
Dugesiidae	4 1	
Chaumatanayaha	4	
Cheumatopsyche Hydropsyche	6	
Stenelmis	15	12L,3A
	13	Z6
Dasyhelea Cryptochironomus	2	20
Polypedilum	2	
Cricotopus/Orthocladius	29	
Chaetocladius	9	
	4	
Paratanytarsus	•	
Tanytarsus	7	
Phaenopsectra	6	
Limnophyes Nanocladius	1	
	1	
Cricotopus	5	
Rheocricotopus	1	
Diamesa	8	
Thienemannimyia gr.	13	

Taxon	No.	Stage					
Nais	151						
Enchytraeidae	1						
SampleID: SD66. RefTest: R	SampleID: SD66. RefTest: Ref. Sample Date: 3/29/2012						
Pisidium	12						
Ferrissia	4						
Caecidotea	13						
Nematoda	2						
Dugesiidae	2						
Helobdella	1						
Boyeria	1						
Calopteryx	2						
Ischnura	1						
Cheumatopsyche	4						
Hydropsyche	7						
Stenelmis	14	10L, 4A					
Chaetocladius	19						
Cricotopus/Orthocladius	15						
Micropsectra	3						
Eukiefferiella	1						
Polypedilum	2						
Paratanytarsus	3						
Phaenopsectra	4						
Tanytarsus	3						
Cryptochironomus	3						
Cricotopus	2						
Diamesa	17						
Psectrocladius	2						
Trichoceridae	1						
Thienemannimyia gr.	15						
Ablabesmyia	1						
Nais	149						
Limnodrilus	5						
Enchytraeidae	2						
Chaetogaster	1						
Tubificinae:bifid chaetae	2						
Quistadrilus Tubifi aima a bair t magtinata	2						
Tubificinae:hair+pectinate chaetae	1						
Ilyodrilus	1						
Acanthocephala	1						
SampleID: SD67. RefTest: Ref. Sample Date: 3/29/2012							
Picidium	12						

Pisidium 12

Taxon	No.	Stage
Sphaerium	1	
Sphaeriidae	3	
Ferrissia	5	
Stagnicola	2	
Caecidotea	14	
Nematoda	1	
Prostoma	2	
Dugesiidae	1	
Helobdella	1	
Sperchon	1	
Boyeria	1	
Cheumatopsyche	7	
Hydropsyche	2	
Stenelmis	15	9L, 6A
Limonia	1	
Ephydra	2	
Paratendipes	3	
Cricotopus/Orthocladius	30	
Micropsectra	4	
Tanytarsus	9	
Paratanytarsus	2	
Cryptochironomus	6	
Dicrotendipes	1	
Phaenopsectra	4	
Chaetocladius	6	
Diamesa	9	
Cricotopus	7	
Limnophyes	1	
Thienemannimyia gr.	4	
Psectrocladius	1	
Nais	80	
Chaetogaster	1	
Enchytraeidae	5	
Quistadrilus	1	
Limnodrilus	2	
Acanthocephala	1	
SampleID: SD68. RefTest: R		Date: 3/29/2012
Pisidium	4	
Ferrissia	2	
Physa	2	
Caecidotea	12	

Taxon	No.	Stage
Nematoda	5	
Dugesiidae	4	
Boyeria	2	
Calopteryx	2	
Coenagrionidae	1	
Cheumatopsyche	2	
Stenelmis	14	8L, 6A
Psychoda	1	
Chaetocladius	19	
Polypedilum	2	
Micropsectra	16	
Cricotopus/Orthocladius	28	
Phaenopsectra	11	
Cryptochironomus	6	
Tanytarsus	20	
Paratanytarsus	18	
Paratendipes	2	
Cricotopus	15	
Parachironomus	1	
Paraphaenocladius	1	
Psectrocladius	6	
Diamesa	5	
Thienemannimyia gr.	13	
Stictochironomus	1	
Ablabesmyia	1	
Tubificinae:bifid chaetae	9	
Nais	29	
Tubificinae:hair+pectinate	2	
chaetae		
Enchytraeidae	5	
Limnodrilus	4	
Quistadrilus	1	
Tubifex	2	
SampleID: SD69. RefTest: Re		nple Date: 3/29/2012
Physa	2	
Caecidotea	51	
Prostoma	5	
Dugesiidae	3	
Calopteryx	4	
Cheumatopsyche	2	
Hydropsyche	5	
Agabus	1	L

Taxon	No.	Stage
Cryptochironomus	3	
Phaenopsectra	7	
Paratanytarsus	1	
Cricotopus	1	
Limnophyes	4	
Cricotopus/Orthocladius	7	
Chaetocladius	1	
Thienemannimyia gr.	8	
Nais	139	
Tubificinae:hair+pectinate chaetae	5	
Enchytraeidae	2	
Limnodrilus	7	
Tubificinae:bifid chaetae	5	
Tubifex	1	

PLOTS OF E	BENTHIC COMMUN	NITY METRICS VEF	RSUS SEDIMENT C	ONCENTRATIONS

APPENDIX C

DATA VALIDATION REPORTS AND DATA USABILITY ASSESSMENT

INTERNAL CORRESPONDENCE

TO:

B. DAVIS

DATE:

MAY 7, 2012

FROM:

JOSEPH KALINYAK

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - PAH / PEST / PCB

NTC GREAT LAKES, CTO 474

SAMPLE DELIVERY GROUP (SDG) - 1204004

SAMPLES:

1 / Aqueous / PAH / PEST / PCB

RB033012-01

22 / Sediment / PAH / PEST / PCB

FD032812-01	FD032812-02	NTC17PCSD53
NTC17PCSD54	NTC17PCSD55	NTC17PCSD56
NTC17PCSD57	NTC17PCSD58	NTC17PCSD59
NTC17PCSD60	NTC17PCSD61	NTC17PCSD62
NTC17PCSD63	NTC17PCSD64	NTC17PCSD65
NTC17PCSD66	NTC17PCSD67	NTC17PCSD68
NTC17PCSD69	NTC17PCSD70	NTC17PCSD71
NTC17PCSD72		

Overview

The sample set for NTC Great Lakes, CTO 474, SDG 1204004 consisted of twenty-two (22) sediment samples and one (1) aqueous rinse blank sample. The samples were analyzed for polynuclear aromatic hydrocarbons (PAH), pesticides (PEST), and polychlorinated biphenyls (PCB), as indicated above. Two (2) field duplicate sample pairs were included in the Sample Delivery Group (SDG); FD032812-01 / NTC17PCSD61 and FD032812-02 / NTC17PCSD53.

The samples were collected by TetraTech on March 27, 28, 29, and 30, 2012 and analyzed by Empirical Laboratories, LLC. All analyses were conducted using USEPA SW-846 Method 8270D Selective Ion Monitoring (SIM) for PAHs, 8081 for PEST, and 8082A for PCBs, analytical and reporting protocols.

The data contained in this SDG were fully validated with regard to the following parameters for samples FD032812-01, FD032812-02, NTC17PCSD61, NTC17PCSD53, NTC17PCSD70, and NTC17PCSD72:

- Data Completeness
- Holding Times
- GC/MS Tuning
 - Initial and Continuing Calibration
 - Laboratory Blank Analyses
 - Surrogate Recoveries
 - Blank Spike/Blank Spike Duplicate Results
 - Internal Standard Recoveries
 - Field Duplicate Precision

TO: B. DAVIS SDG: 1204004

- Compound Quantitation
- * Compound Identification
- Detection Limits

The remainder of the SDG samples were validated with regard to the following parameters:

- Data Completeness
- Holding Times
- * GC/MS Tuning
 - Initial and Continuing Calibration
 - Laboratory Blank Analyses
 - Field Duplicate Precision
- Compound Identification

The symbol (*) indicates that quality control criteria were met for this parameter. Problems affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

PAH PAH

The following PAH contaminants were detected in the method blank for batch 2D04004 at the following maximum concentrations for the laboratory contaminants.

	<u>Maximum</u>	<u>Action</u>
Analyte	Conc. µg/L	Level µg/L
Benzo(a)anthracene (1)	0.0526	0.2630
Chrysene (1)	0.0516	0.2580
Fluoranthene (1)	0.0697	0.3485

⁽¹⁾ Method Blank for batch 2D04004 affecting rinse blank sample RB033012-01.

An action level of five times the maximum level for laboratory contaminants has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Rinse blank samples are not qualified for method blank contamination.

The PAH analyte MS and MSD %Rs and the MS/MSD RPDs were non-compliant for the sample NTC17PCSD61 as listed below. Additionally, other PAH analytes were non-compliant but were not evaluated for validation purposes as the native sample PAH analyte concentrations were >5X the spike concentration. The positive PAH results for the sample NTC17PCSD61 were qualified estimated, (J), as listed in the "ACTION" column.

Analytes	MS %R	MSD %R	RPD	ACTION
Acenaphthene	-126	-85.1	44.1	J
Dibenzo(a,h)anthracene	-141	-51.2	44.6	J
Fluorene	-198	-151	43.1	J
2-Methylnaphthalene	20.3	21.1		J
Naphthalene	16.0	16.6		J

TO: B. DAVIS SDG: 1204004

The PAH analyte MS and MSD %Rs and the MS/MSD RPDs were non-compliant for the sample FD032812-02 as listed below. Additionally, other PAH analytes were non-compliant but were not evaluated for validation purposes as the native sample PAH analyte concentrations were >5X the spike concentration. The positive dibenzo(a,h)anthracene result for the sample FD032812-02 was qualified estimated, (J), as listed in the "ACTION" column. The 2-methylnapthalene and naphthalene sample results were non-detected and were not qualified.

Analytes	MS %R	MSD %R	RPD	<u>ACTION</u>
Dibenzo(a,h)anthracene	145			J
2-Methylnaphthalene	117		39.4	
Naphthalene	110			

The relative percent differences (RPDs) were greater than the 50% quality control limit for acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene for field duplicate samples FD032812-01 and NTC17PCSD61. The positive and non-detected sample results were qualified estimated, (J) and (UJ), for field duplicate imprecision.

The RPDs were greater than the 50% quality control limit for 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene for field duplicate samples FD032812-02 and NTC17PCSD753. The positive and non-detected sample results were qualified estimated, (J) and (UJ), for field duplicate imprecision.

PEST

The pesticide analyte list in the Sample Analysis Plan (SAP) was incorrect/incomplete. Twenty-one pesticide compounds were analyzed and reported by the laboratory.

The following PEST contaminant was detected in the method blank for at the following maximum concentrations for the laboratory contaminants.

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Conc.	<u>Level</u>
gamma-Chlordane (1)	0.00171 mg/kg	0.00855 mg/kg
gamma-Chlordane (2)	0.0166 µg/L	0.0830 µg/L

- (1) Method Blank for batch 2D05007 affecting samples NTC17PCSD53, NTC17PCSD58, NTC17PCSD65, NTC17PCSD66, NTC17PCSD67, NTC17PCSD68, and NTC17PCSD69.
- (2) Method blank for batch 2D03005 affecting sample RB033012-01.

An action level of five times the maximum level for laboratory contaminants has been used to evaluate sample data for blank contamination. Sample aliquot, percent solids, and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Rinse blank samples are not qualified for method blank contamination.

The continuing calibration verification (CCV) percent difference (%D) was greater than the 20% quality control limit for instrument GL-ECD3 for analytes and for times listed below.

.

Column	Analytes
ZB MR-1 on 04/10/12 @ 08:12	heptachlor
ZB MR-2 on 04/10/12 @ 08:12	4,4'-DDE, 4,4'-DDD, dieldrin, toxaphene (@ 09:09)
ZB MR-1 on 04/10/12 @ 15:07 ZB MR-2 on 04/10/12 @ 15:07	4,4'-DDD, 4,4'-DDT, methoxychlor, toxaphene(@ 15:26) 4,4'-DDE, 4,4'-DDT, aldrin, alpha-BHC, alpha-chlordane, beta-BHC, delta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, gamma-BHC, gamma-chlordane, heptachlor, heptachlor epoxide, methoxychlor, toxaphene(@ 15:26)

Affected samples:

NTC17PCSD54	NTC17PCSD55	NTC17PCSD56
NTC17PCSD57	NTC17PCSD60	NTC17PCSD61
NTC17PCSD62	NTC17PCSD63	NTC17PCSD64

Action: With the exception of heptachlor, methoxychlor, and toxaphene, the non-detected PEST results for the samples were not qualified as the alternate column was compliant. The non-detected heptachlor, methoxychlor, and toxaphene sample results were qualified estimated, (UJ). The positive 4,4'-DDD and 4,4'-DDT sample results were qualified estimated, (J). The remaining aforementioned positive analyte results were not qualified as they were reported from the compliant analytical column with the exceptions listed below.

Specific sample actions:

NTC17PCSD55 – ZB MR-2 - positive alpha-chlordane, delta-BHC, endosulfan II, gamma-chlordane, and methoxychlor results qualified estimated, (J).

NTC17PCSD56 – ZB MR-2 - positive gamma-chlordane result qualified estimated, (J).

NTC17PCSD57 - ZB MR-2 - positive gamma-chlordane result qualified estimated, (J).

NTC17PCSD62 – ZB MR-2 – positive delta-BHC, endosulfan II, and gamma-chlordane results qualified estimated, (J).

NTC17PCSD64 – ZB MR-2 - positive gamma-chlordane result qualified estimated, (J).

The CCV %D was greater than the 20% quality control limit for instrument GL-ECD3 for analytes and for times listed below.

Column	Analytes
ZB MR-2 on 04/11/12 @ 10:34	toxaphene
ZB MR-2 on 04/11/12 @ 13:45	delta-BHC, endosulfan sulfate, toxaphene(@ 14:04)

Affected sample: RB033012-01

Action: No validation action as all sample results were non-detected and the alternate column was compliant.

The CCV %D was greater than the 20% quality control limit for instrument GL-ECD3 for analytes and for times listed below.

Column	Analytes
ZB MR-2 on 04/11/12 @ 13:45	delta-BHC, endosulfan sulfate, toxaphene(@ 14:04)
ZB MR-1 on 04/11/12 @ 20:02	4,4'-DDD, 4,4'-DDT, endrin ketone, heptachlor, methoxychlor, toxaphene(@ 20:21)
ZB MR-2 on 04/11/12 @ 20:02	4,4'-DDE, 4,4'-DDT, aldrin, alpha-BHC, alpha-chlordane, beta-BHC, delta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, gamma-BHC, gamma-chlordane, heptachlor, heptachlor epoxide, methoxychlor,

toxaphene(@ 20:21)

Affected samples:

FD032812-01 FD032812-02 NTC17PCSD53 NTC17PCSD58 NTC17PCSD59 NTC17PCSD65 NTC17PCSD66 NTC17PCSD70 NTC17PCSD71 NTC17PCSD72

Action: With the exception of 4,4'-DDT, endrin ketone, heptachlor, methoxychlor, and toxaphene, the non-detected PEST results for the samples were not qualified as the alternate column was compliant. The non-detected 4,4'-DDT, endrin ketone, heptachlor, methoxychlor, and toxaphene sample results were qualified estimated, (UJ). The positive 4,4'-DDD, 4,4'-DDT, and methoxychlor sample results were qualified estimated, (J). The remaining aforementioned positive analyte results were not qualified as they were reported from the compliant analytical column with the exceptions listed below.

Specific sample actions:

FD032812-02 - ZB MR-2 - positive alpha-BHC results qualified estimated, (J).

NTC17PCSD53 - ZB MR-2 - positive alpha-BHC and endosulfan II results qualified estimated, (J).

NTC17PCSD58 – ZB MR-2 - positive endosulfan II result qualified estimated, (J).

NTC17PCSD59 – ZB MR-2 – positive alpha-BHC and gamma-chlordane results qualified estimated, (J).

NTC17PCSD65 – ZB MR-2 - positive delta-BHC result qualified estimated, (J).

NTC17PCSD66 - ZB MR-2 - positive alpha- BHC and delta-BHC results qualified estimated, (J).

NTC17PCSD71 – ZB MR-2 - positive 4,4'-DDE and aldrin results qualified estimated, (J).

NTC17PCSD72 - ZB MR-2 - positive 4,4'-DDE, alpha-BHC, endrin, and gamma-BHC results qualified estimated, (J).

The CCV %D was greater than the 20% quality control limit for instrument GL-ECD3 for analytes and for times listed below.

Column	Analytes
ZB MR-2 on 04/12/12 @ 09:55	aldrin, alpha-BHC, beta-BHC, delta-BHC, endosulfan II, endosulfan sulfate, endrin aldehyde, endrin ketone, gamma-BHC, methoxychlor
ZB MR-1 on 04/12/12 @ 11:48 ZB MR-2 on 04/12/12 @ 11:48	4,4'-DDD, 4,4'-DDT, methoxychlor, toxaphene(@ 12:07) 4,4'-DDE, 4,4'-DDT, aldrin, alpha-BHC, alpha-chlordane, beta-BHC, delta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, gamma-BHC, gamma-chlordane, heptachlor, heptachlor epoxide, methoxychlor, toxaphene(@ 12:07)

Affected samples:

NTC17PCSD67 NTC17PCSD68 NTC17PCSD69

Action: With the exception of methoxychlor and toxaphene, the non-detected PEST results for the samples were not qualified as the alternate column was compliant. The non-detected methoxychlor and toxaphene sample results were qualified estimated, (UJ). The positive 4,4'-DDT, and methoxychlor sample results were qualified estimated, (J). The remaining aforementioned positive analyte results were not qualified as they were reported from the compliant analytical column with the exceptions listed below.

Specific sample actions:

NTC17PCSD67 – ZB MR-1 - positive 4,4'-DDD result qualified estimated, (J).

NTC17PCSD67 – ZB MR-2 - positive aldrin, delta-BHC, and endrin results qualified estimated, (J).

NTC17PCSD68 – ZB MR-1 - positive 4,4'-DDD result qualified estimated, (J).

NTC17PCSD68 - ZB MR-2 - positive aldrin, delta-BHC, and endrin results qualified estimated, (J).

NTC17PCSD69 – ZB MR-1 - positive 4,4'-DDD result qualified estimated, (J). NTC17PCSD69 – ZB MR-2 - positive delta-BHC and endosulfan II results qualified estimated, (J).

The LCS %R result for 4,4'-DDE was greater than the quality control limit for the ZB MR-1 column affecting samples in the batch 2D05007.

Affected sample: NTC17PCSD53

Action: The positive 4,4'-DDE results for the aforementioned sample was qualified estimated, (J), as the sample results were reported from the ZB MR-1 column.

The LCS %R results were greater than the quality control limit affecting samples in the batch 2D02015 for analytical columns as listed below.

Both columns %R analyte: 4,4'-DDE

ZB MR-1 column: heptachlor

ZB MR-2 column: alpha-chlordane, dieldrin, endrin ketone, and gamma-chlordane

Affected samples:

FD032812-01	FD032812-02	NTC17PCSD54
NTC17PCSD55	NTC17PCSD56	NTC17PCSD57
NTC17PCSD59	NTC17PCSD60	NTC17PCSD61
NTC17PCSD62	NTC17PCSD63	NTC17PCSD64
NTC17PCSD70	NTC17PCSD71	NTC17PCSD72

Action: The non-detected aforementioned sample analyte results were not qualified. The positive 4,4'-DDE results for the aforementioned samples were qualified estimated, (J). The remainder of the sample positive analyte results were not qualified as they were reported from the compliant analytical column.

The PEST analyte MS and MSD %Rs and the MS/MSD RPDs were quality control limit non-compliant for the analytical columns affecting sample NTC17PCSD53 as listed below. The positive and non-detected sample analytes were qualified estimated, (J) and (UJ), respectively. The analyte qualification is listed in the "ACTION" column based on which column the analyte result was reported from for positive results and non-compliances on both columns with %Rs less than the quality control limit for non-detected results.

	ZB	MR-1		ZB	MR-2		
Analytes	MS %R	MSD%R	RPD	MS %R	MSD %R	RPD	ACTION
4,4'-DDE	275	126	45.3		47.1	45.4	J
4,4'-DDD	150						J
4,4'-DDT	152		55.7		24.6	49.0	J
Aldrin			32.9		30.4	42.5	UJ
alpha-BHC				54.3	36.5	38.5	J
alpha-Chlordane				47.3	35.0	30.5	
beta-BHC		49.3		42.7	33.9		ŲJ
delta-BHC				41.6	31.8		
Dieldrin				52.0	40.5		
Ensosulfan I						36.5	
Endosulfan II							
Endosulfan sulfate				43.8	35.7		
Endrin				47.9	33.0	34.8	
Endrin aldehyde				33.7	27.8		
Endrin ketone				42.1	30.7	31.7	
gamma-BHC				48.4	35.3	32.0	
gamma-Chlordane				47.7	35.7		
Heptachlor			30.4	48.2	34.4	34.2	UJ
Heptachlor epoxide				49.9	36.5	31.9	
Methoxychlor				36.5	24.7	35.9	

The PEST analyte MS and MSD %Rs and the MS/MSD RPDs were quality control limit non-compliant for the analytical columns affecting sample NTC17PCSD61 as listed below. The positive and non-detected sample analytes were qualified estimated, (J) and (UJ), respectively. The analyte qualification is listed in the "ACTION" column based on which column the analyte result was reported from for positive results and non-compliances on both columns with %Rs less than the quality control limit for non-detected results.

•		B MR-1			ZB MR-2		
Analytes	MS %R	MSD%R	RPD	MS %R_	MSD %R	RPD	ACTION
4,4'-DDE	<u>-</u>			50.7	59.0		
4,4'-DDD		168					J
4,4'-DDT	30.1		86.2	15.5	44.9	81.8	J
Aldrin							
alpha-BHC		~===		55.2	52.0		
alpha-Chlordane				52.1	48.6		
beta-BHC				51.3	43.8		
delta-BHC					46.0		
Dieldrin				53.2	50.7		
Ensosulfan I							
Endosulfan II							
Endosulfan sulfate				53.7	44.9		
Endrin				50.2	47.7		
Endrin aldehyde							
Endrin ketone				46.6	39.0		
gamma-BHC				53.7	50.6		
gamma-Chlordane				55.4	52.3		
Heptachlor				48.9	46.5		
Heptachlor epoxide				56.0	52.4		
Methoxychlor	45.6	46.4		27.5	26.6		ÚJ

The surrogate %Rs were quality control limit non-compliant for tetrachloro-m-xylene (TCX) and decachlorobiphenyl (DCB) for the analytical columns for the samples listed below. All surrogate %Rs were greater than 0%.

Affected samples	TCX	DCB	TCX (2)	DCB (2)
NTC17PCSD61			low	low
FD032812-01			low	
NTC17PCSD53			low	low
FD032812-02		-	low	low
NTC17PCSD70			low	low
NTC17PCSD72			low	low

Action: No validation action was necessary for samples NTC17PCSD61 and FD032812-01, as the alternate column, ZB MR-1, was compliant for the surrogates and the samples had positive results were reported from that column for the samples. Sample non-detected analyte results were not qualified as the alternate column, ZB MR-1, was compliant for the surrogates. The remainder of the sample positive results were qualified estimated, (J), as listed below, due to being reported from the affected column, ZB MR-2.

<u>Sample</u>	Analytes
NTC17PCSD53	alpha-BHC, endosulfan II
FD032812-02	alpha-BHC
NTC17PCSD70	4,4'-DDD
NTC17PCSD72	4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-BHC, endrin, gamma-BHC, methoxychlor

The positive PEST sample FD032812-01, FD032812-02, NTC17PCSD61, NTC17PCSD53, NTC17PCSD70, and NTC17PCSD72 analytes were qualified estimated, (J), for relative percent differences (RPD) greater than the 40% quality control limit for samples as listed below.

: F

Sample	Analytes
FD032812-01	4,4'-DDD, 4,4'-DDE, 4,4'-DDT
FD032812-02	4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-BHC, endrin, gamma-chlordane
NTC17PCSD53	4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-BHC, endrin, methoxychlor
NTC17PCSD61	4,4'-DDD, 4,4'-DDE, 4,4'-DDT, endrin
NTC17PCSD70	4,4'-DDD, 4,4'-DDE, 4,4'-DDT, endosulfan II, gamma-chlordane
NTC17PCSD72	4,4'-DDD, 4,4'-DDE, alpha-BHC, dieldrin, gamma-BHC, gamma-chlordane

The relative percent differences (RPD) were greater than the 50% quality control limit for 4,4,'-DDD, 4,4'-DDE, and 4,4'-DDT for field duplicate samples FD032812-01 and NTC17PCSD61. The positive sample results were qualified estimated, (J), for field duplicate imprecision.

The RPDs were greater than the 50% quality control limit for 4,4'-DDT, endrin, gamma-chlordane, and methoxychlor for field duplicate samples FD032812-02 and NTC17PCSD53. The positive and non-detected sample results were qualified estimated, (J) and (UJ), for field duplicate imprecision with the exception of the gamma-chlordane result for sample NTC17PCSD53 which was qualified for method blank contamination.

Per the laboratory narrative, the sample NTC17PCSD55 beta-BHC and gamma-BHC limit of quantitation (LOQ), limit of detection (LOD), and method detection limits (MDL) were raised due to interference. The sample NTC17PCSD55 beta-BHC and gamma-BHC non-detected results were qualified estimated, (J).

PCB

The average CCV %Ds were greater than the 20% quality control limit for instrument GL-ECD3 for Aroclor-1016 and Aroclor-1260 for column ZB MR-2 on 04/04/12 @ 22:54 and on 04/05/12 @ 04:33.

Affected sample: None, LCS only

Action: No validation action was necessary as no samples were affected.

The average CCV %Ds were greater than the 20% quality control limit for instrument GL-ECD3 for Aroclor-1016 and Aroclor-1260 for column ZB MR-2 on 04/10/12 @ 15:45.

Affected samples:

NTC17PCSD54	NTC17PCSD55	NTC17PCSD56
NTC17PCSD57	NTC17PCSD60	NTC17PCSD61
NTC17PCSD62	NTC17PCSD63	NTC17PCSD64

Action: The sample non-detected results for Aroclor-1016 and Aroclor-1260 were not qualified as the alternate column, column ZB MR-1, was compliant for Aroclor-1016 and Aroclor-1260 for opening and closing CCVs. The positive Aroclor-1260 result for sample NTC17PCSD56 was reported from the ZB MR-2 column and was qualified estimated, (J). The remainder of the sample positive Aroclor-1260 results were not qualified as the results were reported from the ZB MR-1 column.

The average CCV %Ds were greater than the 20% quality control limit for instrument GL-ECD3 for Aroclor-1016 and Aroclor-1260 for column ZB MR-2 on 04/11/12 @ 20:40.

Affected samples:

FD032812-01	FD032812-02	NTC17PCSD53
NTC17PCSD58	NTC17PCSD59	NTC17PCSD65
NTC17PCSD66	NTC17PCSD70	NTC17PCSD71

NTC17PCSD72

Action: The sample non-detected results for Aroclor-1016 and Aroclor-1260 were not qualified as the alternate column, column ZB MR-1, was compliant for Aroclor-1016 and Aroclor-1260 for opening and closing CCVs. The positive Aroclor-1260 results were not qualified as the results were reported from the compliant ZB MR-1 column.

The average CCV %Ds were greater than the 20% quality control limit for instrument GL-ECD3 for Aroclor-1260 for column ZB MR-2 on 04/11/12 @ 20:40.

Affected samples: NTC17PCSD67, NTC17PCSD68, and NTC17PCSD69

Action: The sample non-detected results for Aroclor-1260 were not qualified as the alternate column, column ZB MR-1, was compliant for Aroclor-1260 for opening and closing CCVs.

The LCS %Rs were greater than the quality control limit for batch 2D02015 for Aroclor-1016 and Aroclor-1260 for batch 2D02015 for the ZB MR-1 column.

Affected samples:

FD032812-01	FD032812-02	NTC17PCSD54
NTC17PCSD55	NTC17PCSD56	NTC17PCSD57
NTC17PCSD59	NTC17PCSD60	NTC17PCSD61
NTC17PCSD62	NTC17PCSD63	NTC17PCSD64
NTC17PCSD70	NTC17PCSD71	NTC17PCSD72

Action: The sample non-detected results for Aroclor-1016 and Aroclor-1260 were not qualified. The positive Aroclor-1260 result for samples NTC17PCSD55, NTC17PCSD56, NTC17PCSD62, NTC17PCSD70 and NTC17PCSD72 were qualified estimated, (J).

The MSD %R was less than the quality control limit for Aroclor-1260 for spiked sample NTC17PCSD61 for the ZB MR-2 column.

Action: No validation action was taken as the alternate column was compliant and the sample had a non-detected Aroclor-1260 result.

The surrogate %Rs were quality control limit non-compliant for tetrachloro-m-xylene (TCX) and decachlorobiphenyl (DCB) for the analytical columns for the samples listed below. All surrogate %Rs were greater than 0%.

Affected samples	TCX	DCB	TCX (2)	DCB (2)
NTC17PCSD61			low	low
FD032812-01			low	
NTC17PCSD53			low	low
FD032812-02			low	low
NTC17PCSD70	2002		low	low
NTC17PCSD72			low	low

Action: No validation action was necessary for samples NTC17PCSD61, FD032812-01, NTC17PCSD53, and FD032812-02 as the alternate column, column ZB MR-1, was compliant for the surrogates and the samples had non-detected results for the samples. Sample NTC17PCSD70 and NTC17PCSD72 non-detected results were not qualified as the alternate column was compliant and the positive results were not qualified as they were also reported from the compliant column (bolded italics).

The positive Aroclor-1260 results for the analytical columns had relative percent differences (RPD) greater than the 40% quality control limit for samples NTC17PCSD70 and NTC17PCSD72. The sample positive Aroclor-1260 results were qualified estimated, (J).

: - -----

Additional Comments

Positive results reported below the Limit of Quantitation (LOQ) but above the method detection limit (MDL) were qualified as estimated, (J).

Samples were diluted for PAHs as listed below. The dilutions resulted in elevated reported concentrations for non-detected PAH analytes.

Sample	Dilution	Sample	Dilution
FD032812-01	5X	FD032812-02	10X
NTC17PCSD53	10X	NTC17PCSD54	20X
NTC17PCSD55	10X	NTC17PCSD56	10X
NTC17PCSD57	5X	NTC17PCSD58	5X
NTC17PCSD59	10X	NTC17PCSD60	10X
NTC17PCSD61	5X	NTC17PCSD62	10X
NTC17PCSD63	10X	NTC17PCSD64	10X
NTC17PCSD65	5X	NTC17PCSD66	10X
NTC17PCSD67	10X	NTC17PCSD68	10X
NTC17PCSD69	10X	NTC17PCSD70	20X
NTC17PCSD71	20X	NTC17PCSD72	20X

Samples were diluted for PESTs and Aroclors as listed below. The dilutions resulted in elevated reported concentrations for non-detected PEST and Aroclor analytes.

Sample	Dilution
NTC17PCSD56	5X
NTC17PCSD63	5X

The higher of the two column positive PEST sample results were reported except when the RPD was greater than 100%, in which case the lower of the two column PEST results was reported.

PAH and PEST analyte non-detected results for some analytes for the SDG samples were greater than the Project Action Level (PAL) concentrations for these analytes.

Executive Summary

Laboratory Performance: PEST results were qualified for method blank contamination. PEST results were qualified for %D non-compliances. PAH, PCB, and PEST results were qualified for MS/MSD, LCS, and surrogate %R non-compliances. PAH, PCB, and PEST results were qualified for field duplicate imprecision.

Other Factors Affecting Data Quality: Positive results reported below the LOQ but above the MDL were qualified as estimated, (J).

TO: B. DAVIS

SDG: 1204004

The data for these analyses were reviewed with reference to the USEPA Functional Guidelines for Organic Data Validation (10/99) and Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (April 2009).

Joseph Kalinyak

Chemist/Data Validator

Tetra Tech

Joseph A. Samchuck **Quality Assurance Officer**

Attachments:

Appendix A – Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Value Qualifier Key (Val Qual)

J – The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The result is an estimated non-detected quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

U - Value is a non-detect as reported by the laboratory.

UR - Non-detected result is considered rejected, (UR), as a result of technical non-compliances.

DATA QUALIFICATION CODE (QUAL CODE)

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is less than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

PROJ NO: 01021	NSAMPLE	RB033012-01						
SDG: 1204004	LAB_ID	1204004-23						
FRACTION: PAH	SAMP_DATE	3/30/2012						
MEDIA: WATER	QC_TYPE	NM						
	UNITS	UG/L						
	PCT_SOLIDS	0.0						
	DUP_OF							
PARAMETER		RESULT	VQL	QLCD				
2-METHYLNAPHTHALENE		0.0943	U					
ACENAPHTHENE		0.0943	U					
ACENAPHTHYLENE		0.0943	U					
ANTHRACENE		0.0943	U					
BENZO(A)ANTHRACENE		0.0475	J	P				
BENZO(A)PYRENE		0.0943	U					
BENZO(B)FLUORANTHEN	E	0.0943	U					
BENZO(G,H,I)PERYLENE		0.0943	U					
BENZO(K)FLUORANTHEN	E	0.0943	U					
CHRYSENE		0.0943	U					
DIBENZO(A,H)ANTHRACE	NE	0.0943	U					
FLUORANTHENE		0.112	J	Р				
FLUORENE		0.0943						
INDENO(1,2,3-CD)PYRENI	=	0.0943	U					
NAPHTHALENE	·	0.208						
PHENANTHRENE		0.102	Р					
PYRENE		0.0813	J	Р				

PROJ_NO: 01021	NSAMPLE	FD032812-01			FD032812-02			NTC17PCSD5	3		NTC17PCSD5	64	-
SDG: 1204004	LAB_ID	1204004-09	•		1204004-15			1204004-16			1204004-14		
FRACTION: PAH	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM	NM					NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	76.9			73.0			68.6			71.2		
	DUP_OF	NTC17PCSD6	1		NTC17PCSD5	3							
PARAMETER	·	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
2-METHYLNAPHTHALEN	NE	0.0215	U		0.0453	UJ	G	0.212	J ·	G	0.0929	U	
ACENAPHTHENE		0.0215	UJ	G	0.0933	J	G	1.41	J	G	0.388		
ACENAPHTHYLENE		0.0215	U		0.0453	U		0.0482	U		0.0929	U	
ANTHRACENE		0.0688	J	G	0.334	J	G	2.43	J	G	1.34		
BENZO(A)ANTHRACEN	Ē	0.216	J	G	1.16	J	G	6.38	J	G	2.09		
BENZO(A)PYRENE		0.258	J	G	1.32	J	G	5.69	J	G	2.44		
BENZO(B)FLUORANTHE	ENE	0.261	J	G	1.46	J	G	5.76	J	G	2.31	ļ <u> </u>	
BENZO(G,H,I)PERYLEN	E	0.176	J	G	0.828	J	G	2.82	J	G	1.55	ļ	
BENZO(K)FLUORANTHE	ENE	0.272	J	G	1.34	J	G	6.15	J	G	2.68		
CHRYSENE		0.292	J	G	1.57	J	G	7.07		G	2.47		
DIBENZO(A,H)ANTHRAC	CENE	0.0215	UJ	G	0.267	J	DG	0.933	J	G	0.595		
FLUORANTHENE		0.673	J	G	3.7	J	G	18.4		G	6.75		
FLUORENE	<u></u>	0.0215	UJ	G	0.109	J	G	1.44	J	G	0.535		
INDENO(1,2,3-CD)PYRE	NE	0.176		G	0.778		G	3.13		G	1.44		
NAPHTHALENE		0.0215	U		0.0453	UJ	G	0.473		G	0.0929		
PHENANTHRENE		0.364	J	G	1.93	J	G	13.4		G	4.96	!	ri .
PYRENE		0.513	J	G	2.91	J	G	14.5	J	G	5.12		<u> Li</u>

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	5		NTC17PCSD5	6		NTC17PCSD	57		NTC17PCSD58			
SDG: 1204004	LAB_ID	1204004-01			1204004-02			1204004-03			1204004-17			
FRACTION: PAH	SAMP_DATE	3/27/2012			3/27/2012	3/27/2012			3/27/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM			
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG			
	PCT_SOLIDS	82.3			77.2	-		80.3			77.8			
	DUP_OF									•			•	
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
2-METHYLNAPHTHALE	NE	0.0389	U		0.0426	U		0.020	6 U		0.0214	U		
ACENAPHTHENE		0.118			0.078	J	Р	0.020	6 U		0.0215	J	Р	
ACENAPHTHYLENE		0.0389	U		0.0426	U		0.020	6 U		0.0214	U		
ANTHRACENE		0.306	<u> </u>		0.26			0.052	7		0.0567			
BENZO(A)ANTHRACEN	IE .	1.36			1.07			0.19	6		0.231			
BENZO(A)PYRENE		1.72		<u> </u>	1.29			0.23	8		0.248	<u></u>	1	
BENZO(B)FLUORANTH	IENE	2.09			1.5			0.25	8		0.275			
BENZO(G,H,I)PERYLEN	NE .	1.24			1.05			0.18	8		0.168			
BENZO(K)FLUORANTH	IENE	1.71			1.3			0.2	5		0.289			
CHRYSENE		1.93			1.56		I	0.26	9		0.332			
DIBENZO(A,H)ANTHRA	CENE	0.419			0.34			0.04	6	0.04		J.	Р	
FLUORANTHENE		4.38			3.6			0.61	9		0.74			
FLUORENE		0.126			0.0905			0.020	0.0206 U		0.0214	U		
INDENO(1,2,3-CD)PYR	ENE	1.1			1.01			0.14	6		0.156			
NAPHTHALENE		0.0389	U		0.0426	U		0.020	6 U		0.0214	U		
PHENANTHRENE		1.96			1.66			0.29	1		0.398		15	
PYRENE		3.36			2.73			0.48	6	1	0.578		1.	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD59			NTC17PCSD6	0		NTC17PCSD6	NTC17PCSD61			NTC17PCSD62		
SDG: 1204004	LAB_ID	1204004-13			1204004-08	1204004-08			1204004-07			1204004-06		
FRACTION: PAH	SAMP_DATE	3/28/2012			3/28/2012	3/28/2012			3/28/2012			3/27/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM	NM					NM			
	UNITS MG/KG				MG/KG			MG/KG			MG/KG		· ·	
	PCT_SOLIDS	72.1			60.6			75.2			73.7			
	DUP_OF	1										_		
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
2-METHYLNAPHTHALEN	NE	0.0447	U	•	0.055	U		0.0408	J	DP	0.0443	U		
ACENAPHTHENE		0.0447	U		0.112			0.165	J	DG	0.0613	J	P	
ACENAPHTHYLENE		0.0447	U		0.055	U		0.0217	U		0.0443	U		
ANTHRACENE	•	0.0805	J	P	0.376			0.564	J	G	0.203			
BENZO(A)ANTHRACENE	=	0.296			1.48			0.955	J	G	0.708			
BENZO(A)PYRENE		0.397			1.85			0.933	J	G	0.846			
BENZO(B)FLUORANTHE	NE	0.424			2.15			0.943	J	G	0.876	<u></u>		
BENZO(G,H,I)PERYLENI	Ē	0.322			1.31			0.609	J	G	0.594		\	
BENZO(K)FLUORANTHE	NE	0.455			2.09			0.919	J	G	0.831			
CHRYSENE		0.44			2.17			1.04	J	G	0.842		_	
DIBENZO(A,H)ANTHRAC	CENE	0.105			0.508			0.252	J	DG	0.179			
FLUORANTHENE		0.977			5.14			3.02	J	G	2.27			
FLUORENE		0.0447	U		0.159			0.237	J	DG	0.0443	U		
INDENO(1,2,3-CD)PYRE	NE	0.31			1.3			0.568	J	G	0.553			
NAPHTHALENE		0.0447	U		0.0712	J	Р	0.0306	J	DP	0.0443	U		
PHENANTHRENE		0.465			2.32			2.39	J	G	1.08		1.	
PYRENE		0.746	1		3.97			2.22	J	G	1.77		:	

PROJ_NO: 01021	NSAMPLE				NTC17PCSD6	4		NTC17PCSD	65 ·		NTC17PCSD6	NTC17PCSD66		
SDG: 1204004	LAB_ID	1204004-04			1204004-05	1204004-05			1204004-18			1204004-19		
FRACTION: PAH	SAMP_DATE	3/27/2012			3/27/2012	3/27/2012			3/29/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM	NM					NM			
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG			
	PCT_SOLIDS	76.7			68.0			62.2			66.0			
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
2-METHYLNAPHTHALE	NE	0.0428	U		0.049	U		0.026	เ ีย		0.0485	U		
ACENAPHTHENE		0.0428	U		0.0724	J	Р	0.026	ı∪		0.0622	J	Р	
ACENAPHTHYLENE		0.0428	U		0.049	IJ		0.026	ΙU		0.0485	U		
ANTHRACENE		0.135			0.26			0.0399	J	Р	0.185			
BENZO(A)ANTHRACEN	E	0.586			0.961			0.158	3		0.684			
BENZO(A)PYRENE		0.705			1.13		<u> </u>	0.1	7		0.576			
BENZO(B)FLUORANTH	ENE	0.809			1.25		<u> </u>	0.20	ij		0.683		ļ	
BENZO(G,H,I)PERYLEN	E .	0.515			0.838			0.12	-		0.328		_	
BENZO(K)FLUORANTH	ENE	0.752			1.18			0.196	5		0.707			
CHRYSENE	·	0.757			1.33			0.25			0.902	<u> </u>		
DIBENZO(A,H)ANTHRA	CENE	0.162			0.285			0.038		Р	0.158			
FLUORANTHENE		1.9			3.04			0.47			1.96			
FLUORENE		0.0515	J	Р	0.101			0.026	ı U		0.0485			
INDENO(1,2,3-CD)PYRE	ENE	0.457			0.786			0.10	-		0.325			
NAPHTHALENE		0.0428	U		0.049	U		0.026			0.0485	_		
PHENANTHRENE		0.873			1.46			0.19	7		1.04		<u> </u>	
PYRENE		1.48			2.33			0.380	3		1.49		1.	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD67			NTC17PCSD68			NTC17PCSD69			NTC17PCSD70		
SDG: 1204004	LAB_ID	1204004-21	•		1204004-22			1204004-20			1204004-10		
FRACTION: PAH	SAMP_DATE	3/29/2012			3/29/2012			3/29/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
 	PCT_SOLIDS	59.7			60.5			70.4			44.9		
	DUP_OF												-
PARAMETER		RESULT	VQL	QLCD									
2-METHYLNAPHTHALEN	NE	0.054	U		0.0533	U	İ	0.047	U		0.14	4 U	
ACENAPHTHENE		0.054	U		0.0533	U		0.0604	J	Р	0.14	4 U	
ACENAPHTHYLENE		0.054	U		0.0533	U		0.047	U		0.14	4 U	
ANTHRACENE		0.181			0.0533	U		0.047	U		0.14	4 U	
BENZO(A)ANTHRACENE	:	0.752			0.208			0.99			0.75	8	
BENZO(A)PYRENE		0.625			0.218			1.16			1	.2	
BENZO(B)FLUORANTHE	NE	0.653			0.267			1.32			1.6	52	
BENZO(G,H,I)PERYLENI	=	0.288			0.149			0.737			1.0	8	
BENZO(K)FLUORANTHE	NE	0.645			0.252			1.35			1.1	8	
CHRYSENE		0.734			0.292			1.68			1.1	8	
DIBENZO(A,H)ANTHRAC	ENE	0.0922	J	Р	0.0533	U		0.207			0.14	4 U	
FLUORANTHENE		1.86			0.564			3.46			2.1	6	
FLUORENE		0.054	U		0.0533	U		0.0872	J	Р	0.14	4 U	
INDENO(1,2,3-CD)PYRE	NE	0.296			0.124			0.683			0.92	.5	
NAPHTHALENE		0.054	U		0.0533	U		0.047	U		0.14	4 U	
PHENANTHRENE		0.528			0.23			1.67			0.81	3	6
PYRENE		1.4			0.448			2.83			1.7	77	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD7	1		NTC17PCSD7	2				
SDG: 1204004	LAB_ID	1204004-11			1204004-12					
FRACTION: PAH	SAMP_DATE	3/28/2012			3/28/2012					
MEDIA: SEDIMENT	QC_TYPE	NM			NM					
	UNITS	MG/KG			MG/KG					
	PCT_SOLIDS	70.4			75.6	·				
	DUP_OF									
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD			
2-METHYLNAPHTHALEN	NE .	0.0927	U		0.413					
ACENAPHTHENE		0.165	J	P	1.82					
ACENAPHTHYLENE		0.0927	U		0.0881	U				
ANTHRACENE		0.0927	U	,	2.61					
BENZO(A)ANTHRACENE		1.91			7.14					
BENZO(A)PYRENE		2.62			7.8					
BENZO(B)FLUORANTHE	NE	2.89			7.08					
BENZO(G,H,I)PERYLENI	=	2.1			4.63					
BENZO(K)FLUORANTHE	NE	2.94			8.56					
CHRYSENE		2.81			8.81					
DIBENZO(A,H)ANTHRAC	ENE	0.689			1.91					
FLUORANTHENE		6.8			21.9					
FLUORENE		0.215			1.76					
INDENO(1,2,3-CD)PYRE	NE	1.9			4.53					
NAPHTHALENE		0.0927	υ		1.6					
PHENANTHRENE		3.38			17.8					
PYRENE	<u> </u>	5.3			17.2					

PROJ_NO: 01021	NSAMPLE	RB033012-01		
SDG: 1204004	LAB_ID	1204004-23		
FRACTION: PEST	SAMP_DATE	3/30/2012		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			·
PARAMETER		RESULT	VQL	QLCD
4,4'-DDD		0.00943	U	
4,4'-DDE		0.00943	U	
4,4'-DDT		0.00943	U	
ALDRIN		0.00943	U	
ALPHA-BHC		0.00943	U	
ALPHA-CHLORDANE		0.00943	U	
BETA-BHC		0.00943	U	
DELTA-BHC		0.00943	U	
DIELDRIN		0.00943	U	
ENDOSULFAN I		0.00943	U	
ENDOSULFAN II		0.00943	U	
ENDOSULFAN SULFATE		0.00943	U	
ENDRIN		0.00943	U	
ENDRIN ALDEHYDE		0.00943	U	
ENDRIN KETONE		0.00943	U	
GAMMA-BHC (LINDANE)		0.00943	U	
GAMMA-CHLORDANE		0.00943	U	
HEPTACHLOR		0.00943	U	
HEPTACHLOR EPOXIDE		0.00943	U	
METHOXYCHLOR		0.00943	L	
TOXAPHENE		0.472	U	

PROJ_NO: 01021	NSAMPLE	FD032812-01			FD032812-02			NTC17PCSD5	3		NTC17PCSD5	4	
SDG: 1204004	LAB_ID	1204004-09			1204004-15			1204004-16			1204004-14		
FRACTION: PEST	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	76.9			73.0			68.6			71.2		
	DUP_OF	NTC17PCSD6	31		NTC17PCSD5	3							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
4,4'-DDD		0.00288		CGU	0.0153	J	CU	0.0138	J	CDU	0.0197		С
4,4'-DDE		0.00998		EGU	0.0417		EU	0.0629	J	DEU	0.0491	J	E
4,4'-DDT		0.0188	J	CGU	0.00739	j	CGU	0.0311	J	CDGU	0.00814	J	С
ALDRIN		0.000413	U		0.000435	U		0.000481	UJ	D	0.000464	U	
ALPHA-BHC		0.000413	U		0.00095	J	CRU	0.0007	J	CDPRU	0.000464	U	
ALPHA-CHLORDANE		0.000413	U		0.000435	υ		0.000481	U		0.000464	U	
BETA-BHC		0.000413	U		0.000435	U		0.000481		D	0.000464	U	
DELTA-BHC		0.000413	U		0.000435	U		0.000481	U		0.000464	U	
DIELDRIN		0.000413	U		0.000435	U		0.000481	U		0.000464	U	
ENDOSULFAN I		0.000413	U		0.000435	U		0.000481		<u> </u>	0.000464	U	
ENDOSULFAN II		0.0006	J	Р	0.00132			0.00187		CR	0.00111		
ENDOSULFAN SULFATE		0.000413	U		0.000435	U		0.000481			0.000464	U	
ENDRIN		0.00105			0.0012		GU	0.00341		GU	0.00151		
ENDRIN ALDEHYDE		0.000413	<u> </u>		0.000435	U		0.000481			0.000464	U	
ENDRIN KETONE		0.000413	UJ	С	0.000435	UJ	С	0.000481		С	0.000464	U	
GAMMA-BHC (LINDANE)		0.000413			0.000435			0.000481			0.000464	U	il ra?
GAMMA-CHLORDANE		0.000413			0.00217		GU	0.00567		Α	0.00171		
HEPTACHLOR		0.000413	UJ	С	0.000435		С	0.000481		CD	0.000464		С
HEPTACHLOR EPOXIDE		0.000413	U		0.000435	U		0.000481			0.000464	U	1
METHOXYCHLOR		0.000413	UJ	С	0.000435		CG	0.00246		CGU	0.000464		С
TOXAPHENE	<u> </u>	0.0209	UJ	С	0.022	UJ	С	0.0243	UJ	С	0.0235	IJ	С

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	5		NTC17PCSD5	66		NTC17PCSD5	7		NTC17PCSD5	8	
SDG: 1204004	LAB_ID	1204004-01			1204004-02		-	1204004-03			1204004-17		
FRACTION: PEST	SAMP_DATE	3/27/2012			3/27/2012			3/27/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	82.3			77.2			80.3			77.8		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
4,4'-DDD		0.025	J	С	0.236	J	С	0.00203	J	С	0.00249	J	С
4,4'-DDE		0.036	j	E	0.131	1	E	0.00411	J	E	0.00631		
4,4'-DDT		0.0342	J	С	0.0526	J	С	0.00063	J	СР	0.00073	J	СР
ALDRIN	***	0.000388	U		0.00211	U		0.000403	U		0.000408	U	
ALPHA-BHC		0.000388	U		0.00211	U		0.000403	U		0.000408	U	
ALPHA-CHLORDANE		0.00059	J	СР	0.00211	U		0.000403	U		0.00029	J	Р
BETA-BHC	•	0.000941	UJ	Z	0.00211	U		0.000403	U ·		0.000408	U	
DELTA-BHC		0.0007	J	СР	0.00211	U		0.000403	U		0.000408	U	
DIELDRIN		0.00032	J	Р	0.00211	U		0.000403	U		0.000408	U	
ENDOSULFAN I		0.000388	υ		0.00211	U		0.000403	U		0.000408	U	
ENDOSULFAN II		0.00228	J	С	0.00333	J	P	0.0009			0.0004	J	СР
ENDOSULFAN SULFATE		0.00076	J	P	0.00211			0.000403			0.000408		
ENDRIN		0.00366			0.00511			0.000403			0.000408		
ENDRIN ALDEHYDE		0.000388	U		0.00211			0.000403			0.000408		
ENDRIN KETONE		0.000388	U		0.00211	U		0.000403	U		0.000408	UJ	С
GAMMA-BHC (LINDANE)		0.000823	บJ	Z	0.00211			0.00037	L	Р	0.000408		
GAMMA-CHLORDANE		0.0006	J	СР	0.00666	J	С	0.00329		С	0.00315	U	Ą
HEPTACHLOR		0.000388	UJ	С	0.00211		С	0.000403		С	0.000408		С
HEPTACHLOR EPOXIDE		0.000388	U	1	0.00211	U		0.000403	U	<u> </u>	0.000408	U	
METHOXYCHLOR		0.00418	J	С	0.00211	เกา	С	0.000403	UJ	С	0.000408		С
TOXAPHENE		0.0196	บป	С	0.107	UJ	c	0.0204	UJ	С	0.0206	UJ	С

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	9		NTC17PCSD6	0		NTC17PCSD6	1		NTC17PCSD6	2	
SDG: 1204004	LAB_ID	1204004-13			1204004-08			1204004-07			1204004-06		
FRACTION: PEST	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012			3/27/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
1	PCT_SOLIDS	72.1			60.6			75.2			73.7		
	DUP_OF						-						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
4,4'-DDD		0.00637	J	С	0.0218	J	С	0.00829	J	CDGU	0.0427	J	С
4,4'-DDE		0.0139		E	0.0259	J	E	0.0179	J	EGU	0.0366	J	E
4,4'-DDT		0.00559	J	С	0.0361	J	С	0.00456	J	CDGU	0.0432	J	С
ALDRIN		0.000449	U		0.000538	U		0.00043	U		0.00055	J	Р
ALPHA-BHC		0.00022	J	CP	0.000538	U		0.00043	U		0.000448	U	
ALPHA-CHLORDANE		0.000449	U		0.000538	U		0.00043	U		0.000448	ט	
BETA-BHC		0.000449	U		0.000538	U		0.00043	U		0.000448	บ	
DELTA-BHC		0.000449	U		0.000538	U		0.00043	U		0.00021	J	CP
DIELDRIN		0.000449	U		0.000538	U		0.00043	U		0.000448	U	
ENDOSULFAN I		0.000449	U		0.000538	U		0.00043	U		0.000448	U	
ENDOSULFAN II		0.00027	J	Р	0.00297			0.00046	J	Р	0.00023	J	CP
ENDOSULFAN SULFATE		0.000449	U		0.000538	U		0.00043	U		0.000448	U	
ENDRIN		0.00053	J	P	0.00218			0.00099	J	U	0.00222		
ENDRIN ALDEHYDE		0.000449			0.000538	U		0.00043	U		0.000448	U	
ENDRIN KETONE		0.000449	UJ	С	0.000538	U		0.00043	U		0.000448	U	
GAMMA-BHC (LINDANE)		0.000449	U		0.00079	J	Р	0.00043			0.000448		ı, i
GAMMA-CHLORDANE		0.00081	J	СР	0.00288			0.00068		Р	0.00028		ĊР
HEPTACHLOR		0.000449	UJ	С	0.000538		С	0.00043		С	0.000448	ΟJ	С
HEPTACHLOR EPOXIDE		0.000449	U		0.000538	U		0.00043	U		0.00092		
METHOXYCHLOR		0.000449	UJ	С	0.000538		С	0.00043		CD	0.000448		С
TOXAPHENE		0.0227	เกา	С	0.0272	UJ	С	0.0218	UJ	С	0.0227	UJ	С

PROJ_NO: 01021	NSAMPLE	NTC17PCSD6	3		NTC17PCSD6	64		NTC17PCSD6	5		NTC17PCSD6	6	
SDG: 1204004	LAB_ID	1204004-04			1204004-05			1204004-18			1204004-19		
FRACTION: PEST	SAMP_DATE	3/27/2012			3/27/2012			3/29/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG	•		MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	76.7			68.0			62.2			66.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
4,4'-DDD		0.0665	J	С	0.0484	J	С	0.00608	J	С	0.0234	J	С
4,4'-DDE		0.112	J	E	0.0425	J	E	0.00601			0.026		
4,4'-DDT		0.134	J	С	0.0662	J	С	0.0008	J	CP	0.00469	J	С
ALDRIN		0.00215			0.000473			0.00029		Р	0.000497	U	
ALPHA-BHC		0.00215	U		0.000473	U		0.000527	U		0.00019	J	СР
ALPHA-CHLORDANE		0.00215			0.000473	U		0.000527			0.000497		ļ
BETA-BHC		0.00215	U		0.000473	U	<u> </u>	0.000527	U		0.000497	U	
DELTA-BHC		0.00215	U		0.000473	U		0.00024		СР	0.00031		CP
DIELDRIN		0.00215	U		0.000473	U		0.000527			0.000497		
ENDOSULFAN I		0.00215	บ		0.000473	U		0.000527	U	<u> </u>	0.000497	U	
ENDOSULFAN II		0.00215	U		0.00134	<u> </u>		0.00057	-	Р	0.00205		
ENDOSULFAN SULFAT	E	0.00215	U		0.000473	U		0.000527			0.000497		
ENDRIN		0.00887			0.00421			0.000527			0.00083		Р
ENDRIN ALDEHYDE		0.00215	U		0.000473			0.000527			0.000497		
ENDRIN KETONE		0.00215	U		0.000473			0.000527		С	0.000497		С
GAMMA-BHC (LINDANE	(1)	0.00215	U		0.000473			0.000527			0.000497		4.1
GAMMA-CHLORDANE		0.00185		Р	0.00046		СР	0.00318		Α	0.00065		Ą
HEPTACHLOR		0.00215		С	0.000473		С	0.000527		С	0.000497		С
HEPTACHLOR EPOXID	E	0.00215	U		0.000473	U		0.000527		<u> </u>	0.000497		
METHOXYCHLOR		0.00215	UJ	С	0.000473		С	0.000527		С	0.000497		С
TOXAPHENE		0.109	UJ	С	0.0239	UJ	C	0.0267	IJ	C	0.0251	UJ	С

PROJ_NO: 01021	NSAMPLE	NTC17PCSD67 1204004-21			NTC17PCSD6	8		NTC17PCSD6	9		NTC17PCSD70		
SDG: 1204004	LAB_ID	1204004-21			1204004-22			1204004-20			1204004-10		
FRACTION: PEST	SAMP_DATE	3/29/2012			3/29/2012		•	3/29/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG	·		MG/KG		
:	PCT_SOLIDS	59.7			60.5			70.4			44.9		
	DUP_OF												
PARAMETER	•	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
4,4'-DDD		0.0147	J	С	0.0254	j	С	0.0063	J	С	0.00079	J	CPRU
4,4'-DDE		0.0225			0.0323			0.0142			0.00221	J	EU
4,4'-DDT		0.00915	J	С	0.00414	J	С	0.00794	J	С	0.000734	UJ	С
ALDRIN		0.00051	J	СР	0.00069	J	СР	0.000462	U		0.000734	U	
ALPHA-BHC		0.000549	U		0.000545	U		0.000462			0.000734		
ALPHA-CHLORDANE		0.00169			0.000545	U		0.000462	U		0.000734		
BETA-BHC		0.000549	U		0.000545	U		0.000462	U		0.000734	U	
DELTA-BHC		0.0006	J	СР	0.00133	J	С	0.00044	·	СР	0.000734		
DIELDRIN		0.00143			0.00204		С	0.000462			0.000734		
ENDOSULFAN I		0.000549	U		0.000545	U		0.000462	U		0.000734	U	
ENDOSULFAN II		0.00137			0.00118	J	С	0.00165		С	0.00224		U
ENDOSULFAN SULFATE		0.00038	J	Р	0.00081		СР	0.000462			0.000734		
ENDRIN		0.00088	-	СР	0.00073		СР	0.00128	↓		0.000734		
ENDRIN ALDEHYDE		0.000549			0.000545			0.000462			0.000734		
ENDRIN KETONE		0.000549			0.000545			0.000462	<u> </u>		0.000734		С
GAMMA-BHC (LINDANE)		0.000549			0.000545	<u> </u>		0.000462			0.000734		1 1
GAMMA-CHLORDANE		0.00079	+	Α	0.00192		A	0.00037	↓	Α	0.00392	-	ų
HEPTACHLOR		0.000549			0.000545			0.000462			0.000734		С
HEPTACHLOR EPOXIDE		0.000549	1	<u> </u>	0.00024	 	СР	0.000462			0.000734		
METHOXYCHLOR		0.000549	UJ	С	0.000545		С	0.00139		С	0.000734		С
TOXAPHENE		0.0278	UJ	С	0.0276	UJ	C	0.0234	UJ	C	0.0372	UJ	C

PROJ_NO: 01021	NSAMPLE	NTC17PCSD7	1		NTC17PCSD7	2	
SDG: 1204004	LAB_ID	1204004-11			1204004-12		
FRACTION: PEST	SAMP_DATE	3/28/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM		
	UNITS	MG/KG			MG/KG		
	PCT_SOLIDS	70.4	·		75.6		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
4,4'-DDD		0.00087	J	СР	0.00096	J	CRU
4,4'-DDE		0.00036	J	СР	0.00037	J	CEPRU
4,4'-DDT		0.00375	J	С	0.00414	J	CRU
ALDRIN		0.00072	J	СР	0.000437	U	
ALPHA-BHC		0.00056	J	P	0.00087	J	CPRU
ALPHA-CHLORDANE		0.000468	J		0.000437	υ	
BETA-BHC		0.000468	U		0.000437	U	
DELTA-BHC		0.00043	J	Р	0.000437	U	
DIELDRIN		0.000468	U		0.00029	J	PU
ENDOSULFAN I		0.000468	υ		0.000437	U	
ENDOSULFAN II		0.00245			0.0025		
ENDOSULFAN SULFATE		0.000468	U		0.000437		
ENDRIN		0.00085	J	Р	0.00077		CPR
ENDRIN ALDEHYDE		0.000468	U		0.000437		
ENDRIN KETONE		0.000468	UJ	С	0.000437	UJ	С
GAMMA-BHC (LINDANE)		0.00079	J	Р	0.00134		CRU
GAMMA-CHLORDANE		0.00263		-	0.00301		U
HEPTACHLOR		0.000468	UJ	С	0.000437		С
HEPTACHLOR EPOXIDE		0.000468	U		0.000437		
METHOXYCHLOR		0.000468	UJ	С	0.00198	J	CR
TOXAPHENE		0.0237	UJ	С	0.0221	UJ	C

PROJ_NO: 01021	NSAMPLE	RB033012-01		
SDG: 1204004	LAB_ID	1204004-23		
FRACTION: PCB	SAMP_DATE	3/30/2012		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
AROCLOR-1016		0.236	U	
AROCLOR-1221		0.236	U	
AROCLOR-1232		0.236	U	
AROCLOR-1242		0.236	U	
AROCLOR-1248		0.236	U	
AROCLOR-1254		0.236	U	
AROCLOR-1260		0.236	U	

4/27/2012

PROJ_NO: 01021	NSAMPLE	FD032812-01			FD032812-02			NTC17PCSD5	3		NTC17PCSD5	54	-
SDG: 1204004	LAB_ID	1204004-09			1204004-15			1204004-16			1204004-14		
FRACTION: PCB	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	76.9	73		73.0			68.6			71.2		
	DUP_OF	NTC17PCSD6	1		NTC17PCSD5	CSD53							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
AROCLOR-1016		0.0104	U		0.011	U		0.0121	U		0.0117	U	
AROCLOR-1221		0.0104	U		0.011	U		0.0121	U		0.0117	U	
AROCLOR-1232		0.0104	U		0.011	U		0.0121	U		0.0117	U	
AROCLOR-1242		0.0104	U		0.011	U		0.0121	U		0.0117	U	
AROCLOR-1248		0.0104	U		0.011	U		0.0121	U		0.0117	U	
AROCLOR-1254		0.0104	U		0.011	U		0.0121	U		0.0117	U	
AROCLOR-1260		0.0104	U		0.011	U		0.0121	U		0.0117	U	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	5		NTC17PCSD5	6		NTC17PCSD5	7		NTC17PCSD5	8	
SDG: 1204004	LAB_ID	1204004-01	-		1204004-02			1204004-03			1204004-17		
FRACTION: PCB	SAMP_DATE	3/27/2012			3/27/2012			3/27/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG	<u></u>	-	MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	82.3	77.2		77.2	•		80.3			77.8		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
AROCLOR-1016	,	0.0098	U		0.0532	U		0.0102	U		0.0103	U	
AROCLOR-1221		0.0098	U		0.0532	U		0.0102	J		0.0103	U	
AROCLOR-1232	•	0.0098	U		0.0532	U		0.0102	U		0.0103	U	
AROCLOR-1242		0.0098	U		0.0532	U		0.0102	J		0.0103	U	
AROCLOR-1248		0.0098	U		0.0532	U		0.0102	U		0.0103	U	
AROCLOR-1254		0.0098	U		0.0532	U		0.0102	U		0.0103	U	
AROCLOR-1260		0.0352	J	E	0.0586	J	CEP	0.0102	U		0.0103	U	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	9		NTC17PCSD6	0		NTC17PCSD6	1		NTC17PCSD	32	
SDG: 1204004	LAB_ID	1204004-13			1204004-08			1204004-07			1204004-06		
FRACTION: PCB	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012		·	3/27/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	72.1	60.6				-	75.2			73.7		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
AROCLOR-1016	· · · · · · · · · · · · · · · · · · ·	0.0113	U		0.0136	U		0.0109	U		0.0113	U	
AROCLOR-1221		0.0113	U		0.0136	U		0.0109	U		0.0113	U	
AROCLOR-1232		0.0113	U		0.0136	U		0.0109	U		0.0113	U	
AROCLOR-1242		0.0113	U		0.0136	IJ		0.0109	U		0.0113	U	
AROCLOR-1248		0.0113	U		0.0136	U		0.0109	U		0.0113	U	
AROCLOR-1254		0.0113	U		0.0136	U		0.0109	U		0.0113	U	
AROCLOR-1260		0.0113	U		0.0136	U		0.0109	U		0.0263	J	E

PROJ_NO: 01021	NSAMPLE	NTC17PCSD6				64		NTC17PCSD6	5		NTC17PCSD6	6	
SDG: 1204004	LAB_ID	1204004-04			1204004-05			1204004-18			1204004-19		
FRACTION: PCB	SAMP_DATE	3/27/2012			3/27/2012			3/29/2012		•	3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		•
	PCT_SOLIDS	76.7	6		68.0			62.2			66.0		-
	DUP_OF					•						•	
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
AROCLOR-1016		0.0543	U		0.0119	U		0.0133	U		0.0125	U	
AROCLOR-1221		0.0543	U		0.0119	U		0.0133	Ü		0.0125	U	
AROCLOR-1232		0.0543	U		0.0119	U		0.0133	U		0.0125	U	
AROCLOR-1242		0.0543	U		0.0119	U		0.0133	Ų		0.0125	U	
AROCLOR-1248		0.0543	U		0.0119	U		0.0133	U		0.0125	U	
AROCLOR-1254		0.0543	U		0.0119	U		0.0133	U		0.0125	U	
AROCLOR-1260		0.0543	U		0.0119	U		0.0133	U		0.0125	U	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD67		NTC17PCSD68			NTC17PCSD6	NTC17PCSD69			NTC17PCSD70			
SDG: 1204004	LAB_ID	1204004-21			1204004-22			1204004-20	1204004-20			1204004-10		
FRACTION: PCB	SAMP_DATE	3/29/2012			3/29/2012			3/29/2012	3/29/2012		3/28/2012			
MEDIA: SEDIMENT	QC_TYPE	NM		NM			NM	NM			NM			
UNITS PCT_SOLIDS		MG/KG			MG/KG 60.5			MG/KG	MG/KG		MG/KG			
		59.7		70.4				44.9						
	DUP_OF					***				-	1			
PARAMETER	•	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
AROCLOR-1016		0.0139	U		0.0138	U		0.0117	U		0.0185	U		
AROCLOR-1221		0.0139	U		0.0138	U		0.0117	U		0.0185	U		
AROCLOR-1232		0.0139	U		0.0138	U		0.0117	U		0.0185	U		
AROCLOR-1242		0.0139	U		0.0138	U		0.0117	U		0.0185	U		
AROCLOR-1248		0.0139	U		0.0138	U		0.0117	U		0.0185	U		
AROCLOR-1254	•	0.0139	U		0.0138	U		0.0117	U		0.0185	U		
AROCLOR-1260		0.0139	U		0.0138	U		0.0117	บ		0.0707	J	EU	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD7	1		NTC17PCSD72				
SDG: 1204004	LAB_ID	1204004-11			1204004-12				
FRACTION: PCB	SAMP_DATE	3/28/2012			3/28/2012				
MEDIA: SEDIMENT	QC_TYPE	NM			NM				
	UNITS	MG/KG 70.4			MG/KG				
	PCT_SOLIDS				75.6				
	DUP_OF								
PARAMETER	•	RESULT	VQL	QLCD	RESULT	VQL	QLCD		
AROCLOR-1016		0.0118	U		0.011	U			
AROCLOR-1221		0.0118	U		0.011	U			
AROCLOR-1232		0.0118	U		0.011	U			
AROCLOR-1242		0.0118	U		0.011	U			
AROCLOR-1248		0.0118	U		0.011	U			
AROCLOR-1254		0.0118	U		0.011	U			
AROCLOR-1260		0.0118	U		0.025	J	EU		

5/2/2012

Tetra Tech

INTERNAL CORRESPONDENCE

TO:

B. Davis

DATE:

May 2nd, 2012

FROM:

MEGAN CARSON

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION - SELECT METALS, TOC, AND pH

NTC GREAT LAKES CTO 474

SAMPLE DELIVERY GROUP (SDG) - 1204004

SAMPLES:

22/Sediment/

FD032812-01	FD032812-02	NTC17PCSD53
NTC17PCSD54	NTC17PCSD55	NTC17PCSD56
NTC17PCSD57	NTC17PCSD58	NTC17PCSD59
NTC17PCSD60	NTC17PCSD61	NTC17PCSD62
NTC17PCSD63	NTC17PCSD64	NTC17PCSD65
NTC17PCSD66	NTC17PCSD67	NTC17PCSD68
NTC17PCSD69	NTC17PCSD70	NTC17PCSD71

NTC17PCSD72

1/Water/ RB033012-01

Overview

The sample set for NTC Great Lakes CTO 474, SDG 1204004, consists of twenty-two (22) sediment environmental samples and one rinsate blank. This SDG contained two field duplicate pair: FD032812-01/NTC17PCSD61 and FD032812-02/NTC17PCSD53.

All samples were analyzed for arsenic, cadmium, chromium, copper, lead, mercury, zinc and total organic carbon (TOC). Samples FD032812-02, NTC17PCSD53, NTC17PCSD58, NTC17PCSD59, NTC17PCSD61, NTC17PCSD63, NTC17PCSD65, and NTC17PCSD67 were analyzed for pH. The samples were collected by Tetra Tech NUS on March 27th, 28th, and 29th, 2012 and analyzed by Empirical Laboratories LLC. All analyses were conducted in accordance with Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Metals analyses were conducted using SW-846 method 6010C. Mercury analyses were conducted using methods 7471 and 7470.

Samples FD032812-01, FD032812-02, NTC17PCSD53, NTC17PCSD61, NTC17PCSD70, and NTC17PCSD72 were evaluated based on the following:

- Data Completeness
- Holding Times
- Initial and Continuing Calibrations
- Laboratory Method / Preparation Blanks
- ICP Interference Analysis
- Laboratory Control Sample Recoveries
 - Matrix Spike / Matrix Spike Duplicate Recoveries
- ICP Serial Dilution Results
- Internal Standard Recoveries
- Field Duplicate Results
- Laboratory Duplicate Results

TO: B. Davis-PAGE 2

DATE: 5/2/2012

Detection Limits

Analyte Quantitation

* - All quality control criteria were met for this parameter.

All samples (except for samples FD032812-01, FD032812-02, NTC17PCSD53, NTC17PCSD61, NTC17PCSD70, and NTC17PCSD72) were evaluated based on the following:

- Data Completeness
- Holding Times
- Initial and Continuing Calibrations
- Laboratory Method / Preparation Blanks
- Field Duplicate Results
- Detection Limits
 - * All quality control criteria were met for this parameter.

Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B. Appendix C contains the documentation to support the findings as discussed in this validation report.

Full Validation:

The matrix spike for preparation batch 2D09811 had percent recoveries > 120% for copper and zinc. All samples in preparation batch 2D09811 were affected. Positive results were qualified as estimated (J).

The matrix spike for preparation batch 2D09812 had a percent recovery > 120% for zinc. All samples in preparation batch 2D09812 were affected. Positive results were qualified as estimated (J).

The matrix spike for preparation batch 2D10115 had a percent recovery > 120% for TOC. All samples in preparation batch 2D10115 were affected. Positive results were qualified as estimated (J).

Limited Validation:

All sample results were within quality control limits.

Notes

The following contaminant was detected in preparation blanks at the following maximum concentration:

<u>Maximum</u>	<u>Action</u>
<u>Concentration</u>	<u>Level</u>
0.31 mg/kg	1.55 mg/kg
0.27 mg/kg	1.35 mg/kg
	0.31 mg/kg

⁽¹⁾ Maximum concentration found in a preparation blank affecting samples in preparation batch 2D09811.

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot, percent solids, and dilution factors were

Maximum concentration found in a preparation blank affecting samples in preparation batch 2D09812.

TO: B. Davis-PAGE 3

DATE: 5/2/2012

taken into consideration when evaluating for blank contamination. No validation action was warranted as sample results were greater than the blank action level.

Several samples were analyzed at 5X dilutions.

Executive Summary

Laboratory Performance: None.

Other Factors Affecting Data Quality: High matrix spike recoveries were noted for copper, zinc and TOC affecting several samples.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", October 2004, and the DOD document entitled "Quality System Manual (QSM) for Environmental Laboratories" (April, 2009).

The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech Megan Carson

Chemist/Data Validator

ৰ্বিetra Tech Joseph A. S

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

Α Lab Blank Contamination

В Field Blank Contamination

С Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 GC/MS Tuning Noncompliance

D MS/MSD Recovery Noncompliance

Ε = LCS/LCSD Recovery Noncompliance

F Lab Duplicate Imprecision

G = Field Duplicate Imprecision

Н = Holding Time Exceedance

= ICP Serial Dilution Noncompliance

= ICP PDS Recovery Noncompliance; MSA's r < 0.995 J

= ICP Interference - includes ICS % R Noncompliance Κ

L Instrument Calibration Range Exceedance

М Sample Preservation Noncompliance

Ν Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

0 = Poor Instrument Performance (i.e., base-time drifting)

Р Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Other problems (can encompass a number of issues; i.e.chromatography,interferences,

Q etc.)

R Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

Т = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

Χ = Signal to noise response drop

= Percent solids <30% Υ

Z Uncertainty at 2 sigma deviation is less than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

= Tentatively Identified Compound column bleed **Z**2

PROJ_NO: 01021	NSAMPLE	RB033012-01		
SDG: 1204004	LAB_ID	1204004-23		
FRACTION: M	SAMP_DATE	3/30/2012		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
ARSENIC		1.5	U	
CADMIUM		0.5	U	
CHROMIUM		1	U	
COPPER		2	U	
LEAD		0.75	U	
MERCURY		0.2	U	
ZINC		2.5	U	

4/27/2012

PROJ_NO: 01021	NSAMPLE	FD032812-01			FD032812-02			NTC17PCSD5	3		NTC17PCSD5	54	
SDG: 1204004	LAB_ID	1204004-09			1204004-15			1204004-16			1204004-14		,
FRACTION: M	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG		•	MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	76.9			73.0			68.6			71.2		
	DUP_OF	NTC17PCSD6	61		NTC17PCSD	53							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		6.97			8.58			9.46			7.26		
CADMIUM		0.657	U		0.674	J	Р	0.445	٦,	Р	0.717	U	
CHROMIUM		16.3			22.6	i		23.4			19.2		
COPPER		29.3	J	D	77.6	i		68.3			43.5	J	D
LEAD		17.8			105	6		96.7			30		
MERCURY		0.0322	J	Р	0.126			0.17			0.124		
ZINC		121	J	D	381	J	D	384	J	D	131	<u> </u>	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	5		NTC17PCSD5	6		NTC17PCSD5	7		NTC17PCSD	58	
SDG: 1204004	LAB_ID	1204004-01			1204004-02			1204004-03			1204004-17		
FRACTION: M	SAMP_DATE	3/27/2012			3/27/2012			3/27/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM	-	
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	82.3			77.2			80.3		-	77.8		
	DUP_OF								·				
PARAMETER	•	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		5.55			6.79			5.54			7.47		
CADMIUM		0.398	J	Р	0.451	J	Ρ .	0.61	U		0.627	U	
CHROMIUM		14.3			17.7			15.6			15.8		
COPPER		222	J	D	62.2	J	D	37.2	J	D	34.7		
LEAD		109			67.5			21.8			29		
MERCURY		0.159			0.181			0.0442			0.0329	J	Р
ZINC		1180			224			96.7			107	J	D

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	9		NTC17PCSD6	30		NTC17PCSD6	1		NTC17PCSD6	2	
SDG: 1204004	LAB_ID	1204004-13			1204004-08		·	1204004-07			1204004-06		
FRACTION: M	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012			3/27/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	72.1			60.6			75.2			73.7		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		7.34			6.94			8.02			5.57		
CADMIUM		0.69	U		0.454	J	Р	0.678	U		0.789	J	Р
CHROMIUM		19.1			18		-	15.2			19.9		
COPPER		46.2	J	D	89.6	J	D	28.5	j	D	50.6	J	D
LEAD		29.6			56.8			15.4			33.7		
MERCURY		0.0652			0.132			0.0289	J	Р	0.171		
ZINC		141			329			85.5	J	D	56.7		

PROJ_NO: 01021	NSAMPLE	NTC17PCSD6	3		NTC17PCSD6	i4.		NTC17PCSD6	55		NTC17PCSD6	66	
SDG: 1204004	LAB_ID	1204004-04			1204004-05			1204004-18			1204004-19		
FRACTION: M	SAMP_DATE	3/27/2012	-		3/27/2012			3/29/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG			MG/KG			MG/KG		
	PCT_SOLIDS	76.7			68.0			62.2			66.0		
	DUP_OF												
PARAMETER	·	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		6.67			7.77			6.34			6.91		
CADMIUM		0.39	J	Р	0.707	U		0.808	U		0.725	U	
CHROMIUM		26.5			13.9			17.8			17.8		
COPPER		70.3	J	D	92.3	J	D	26.6			36.8		
LEAD		102			64.8			24			33.8		
MERCURY		0.157			0.22			0.0654			0.169		
ZINC		299			357			91.8	J	D	144	J	D

PROJ_NO: 01021	NSAMPLE	NTC17PCSD6	7		NTC17PCSD6	88		NTC17PCSD6	9		NTC17PCSD7	'0	
SDG: 1204004	LAB_ID	1204004-21			1204004-22			1204004-20			1204004-10		
FRACTION: M	SAMP_DATE	3/29/2012			3/29/2012			3/29/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/KG			MG/KG	·		MG/KG			MG/KG		
	PCT_SOLIDS	59.7			60.5			70.4			44.9		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		6.45			6.46			7.59			13.5		
CADMIUM		0.805	U	T.	0.0866	J	Р	0.703	U		2.4	J	Р
CHROMIUM		17.7			11			20.7			33.2		
COPPER		31			27.4			40.6			390	J	D
LEAD		25.8			24.6	l		53.6			220		
MERCURY		0.632			0.203			0.061			0.366		
ZINC		104	J	D	96	J	D	146	J	D	1580	J	D

PROJ_NO: 01021	NSAMPLE	NTC17PCSD7	1		NTC17PCSD7	'2	
SDG: 1204004	LAB_ID	1204004-11	-		1204004-12		
FRACTION: M	SAMP_DATE	3/28/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM		
	UNITS	MG/KG			MG/KG		
	PCT_SOLIDS	70.4			75.6		
	DUP_OF					•	
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC	-	5.41			6.73		
CADMIUM		1.32	J	Р	0.679	U	
CHROMIUM		22.9			21.3		<u> </u>
COPPER		251	J	D	94.3	j	D
LEAD	-	144			29.7		
MERCURY		0.96			0.193		
ZINC		848			300	J	D

PROJ_NO: 01021	NSAMPLE	FD032812-01			FD032812-02						NTC17PCSD5	53	
SDG: 1204004	LAB_ID	1204004-09			1204004-15						1204004-16		
FRACTION: MISC	SAMP_DATE	3/28/2012			3/28/2012						3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM						NM		
	UNITS PCT_SOLIDS				MG/KG			S.U.			MG/KG		
					73.0			199.0			68.6		
	DUP_OF	NTC17PCSD6	61		NTC17PCSD	53		NTC17PCSD	53				
PARAMETER	RESULT VQL QLCD		QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
PH								7.	7				
TOTAL ORGANIC CARE	BON	12900			20200	J	D				22000	J	D

PROJ_NO: 01021	NSAMPLE	NTC17PCS	D53		NTC17PCSD	54		NTC17PCSD	55		NTC17PCS	D56	
SDG: 1204004	LAB_ID	1204004-16			1204004-14			1204004-01			1204004-02		
FRACTION: MISC	SAMP_DATE	3/28/2012			3/28/2012			3/27/2012			3/27/2012		
MEDIA: SEDIMENT	QC_TYPE	NM		NM			NM	_		NM			
	S.U.			MG/KG			MG/KG			MG/KG			
UNITS PCT_SOLIDS		199.0	•		71.2			82.3			77.2		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
PH	7.63												
TOTAL ORGANIC CARE	ON				18900			1860	o		2280	00	

5/2/2012

PROJ_NO: 01021	NSAMPLE	NTC17PCS	D57		NTC17PCSI	D58					NTC17PCSE)59	
SDG: 1204004	LAB_ID	1204004-03			1204004-17						1204004-13		
FRACTION: MISC	SAMP_DATE	3/27/2012			3/29/2012						3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	NM			NM						NM		
	UNITS	MG/KG			MG/KG			S.U.			MG/KG		
	PCT_SOLIDS	80.3			77.8			199.0	_		72.1		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
PH								7.73	3				
TOTAL ORGANIC CARE	BON	1790	00		1190	00			1		1160	0	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD5	9		NTC17PCSE	60		NTC17PCSD6	1					
SDG: 1204004	LAB_ID	1204004-13			1204004-08			1204004-07						
FRACTION: MISC	SAMP_DATE	3/28/2012			3/28/2012			3/28/2012						
MEDIA: SEDIMENT	QC_TYPE	NM			NM	·		NM						
	UNITS	S.U.			MG/KG			MG/KG			S.U.			
	PCT_SOLIDS	199.0			60.6			75.2			199.0			
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
PH	•	7.65			- -						7.75	5		
TOTAL ORGANIC CARB	ON				3670	כ		11000	j	D		7.70		

PROJ_NO: 01021	NSAMPLE	NTC17PCSD6	2		NTC17PCSD6	3					NTC17PCSD	64	
SDG: 1204004	LAB_ID	1204004-06			1204004-04						1204004-05		
FRACTION: MISC	SAMP_DATE	3/27/2012			3/27/2012						3/27/2012		
MEDIA: SEDIMENT	QC_TYPE	-									NM		
	UNITS	MG/KG			MG/KG			S.U.			MG/KG		
	PCT_SOLIDS	73.7			76.7			199.0			68.0		
	DUP_OF			•									
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
PH							7.4	4					
TOTAL ORGANIC CARB	ON	24100			10200						2210	o	

PROJ_NO: 01021	NSAMPLE	NTC17PCSD6	35					NTC17PCSD6	NTC17PCSD66			NTC17PCSD67		
SDG: 1204004	LAB_ID	1204004-18						1204004-19	1204004-19			1204004-21		
FRACTION: MISC	SAMP_DATE	3/29/2012	3/29/2012						3/29/2012			3/29/2012		
MEDIA: SEDIMENT	QC_TYPE	NM	M						NM		NM	NM		
	UNITS	MG/KG			S.U.	S.U.			MG/KG			MG/KG		
	PCT_SOLIDS	62.2			199.0			66.0			59.7			
	DUP_OF						·							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
PH					7.34									
TOTAL ORGANIC CARE	BON	13900				T		18100			29000)		

PROJ_NO: 01021	NSAMPLE	NTC17PCSD6							NTC17PCSD69 1204004-20			NTC17PCSD70 1204004-10		
SDG: 1204004	LAB_ID	1204004-21												
FRACTION: MISC	SAMP_DATE	3/29/2012	/29/2012 3		3/29/2012	3/29/2012			3/29/2012			3/28/2012		
MEDIA: SEDIMENT	QC_TYPE	YPE NM N			NM			NM	M NM		NM			
			MG/KG	MG/KG			MG/KG			MG/KG				
	PCT_SOLIDS	199.0			60.5	60.5			70.4			44.9		
	DUP_OF			-				-				•		
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
PH		7.21												
TOTAL ORGANIC CARB	ON				21500			33100			7130	וכ		

PROJ_NO: 01021	NSAMPLE	NTC17PCSE	071		NTC17PCSD72			
SDG: 1204004	LAB_ID	1204004-11	-		1204004-12			
FRACTION: MISC	SAMP_DATE	3/28/2012			3/28/2012			
MEDIA: SEDIMENT	QC_TYPE	NM			NM			
	UNITS	MG/KG			MG/KG			
	PCT_SOLIDS	70.4			75.6			
,	DUP_OF							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	
PH								
TOTAL ORGANIC CARBON		29000			12900 J D			

INTERNAL CORRESPONDENCE

TO:

B. Davis

DATE:

July 17, 2012

FROM:

MEGAN CARSON

COPIES:

DV FILE

SUBJECT:

ORGANIC AND INORGANIC DATA VALIDATION - PAHs, PEST, PCB.

SELECT METALS.

NTC GREAT LAKES CTO F275

SAMPLE DELIVERY GROUP (SDG) - 1206096

SAMPLES:

2/Sediment/

NTC17PCSD50

NTC17PCSD51-52

Overview

The sample set for NTC Great Lakes CTO F275, SDG 1206096, consists of two (2) sediment environmental samples. This SDG contained no field duplicate pairs.

All samples were analyzed for select metals. Sample NTC17PCSD50 was analyzed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCB), and pesticides (PEST). The samples were collected by Tetra Tech on June 14th, 2012 and analyzed by Empirical Laboratories LLC. All analyses were conducted in accordance with Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Metals analyses were conducted using SW-846 method 6010C. Mercury analyses were conducted using method 7471A. PAH analyses were conducted using method 8270D. Pesticide analyses were conducted using method 8081A. PCB analyses were conducted using method 8082A.

The data contained in this SDG were validated with regard to the following parameters:

- * Data Completeness
- Holding Times
- Instrument performance and tuning
 - Initial and Continuing Calibrations
 - Laboratory Method / Preparation Blanks
- ICP Interference Analysis
 - Laboratory Control Sample Recoveries
 - Matrix Spike / Matrix Spike Duplicate Recoveries
- ICP Serial Dilution Results
 - Surrogate Recoveries
- Internal Standard Recoveries
- Field Duplicate Results
- Laboratory Duplicate Results
- Detection Limits
 - Analyte Quantitation
 - * All quality control criteria were met for this parameter.

Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B. Appendix C contains the documentation to support the findings as discussed in this validation report.

TO: B. Davis- PAGE 2 DATE: 7/17/2012

PAH:

No data quality issues were noted.

PCB:

Sample NTC17PCSD50 had percent recoveries > 125% for surrogates tertrachloro-m-xylene (column 1 and 2) and decachlorobiphenyl (column 1). The positive Aroclor-1260 result was qualified a estimated (J) and non-detected results were not qualified.

PEST:

The initial calibration analyzed on 6/26/12 had a relative standard deviation > 20% for 4,4-DDT (column 1) but the coefficient of determination (COD) was acceptable. No action was required.

The continuing calibration analyzed on 6/27/12 at 12:32 had difference > 20% for 4,4-DDE (both columns), 4,4-DDD (both columns), heptachlor (column 1), and methoxychlor (column 1). The positive 4,4-DDE result was qualified as estimated (J). The non-detected 4,4-DDD result was qualified as estimated (UJ). No validation action was taken for heptachlor and methoxychlor as the non-compliance occurred on only one column and the results were non-detected.

The continuing calibration analyzed on 6/27/12 at 14:44 had difference > 20% for 4,4-DDE (both columns), 4,4-DDD (both columns), 4,4-DDT (column 2), beta-BHC (column 1), delta-BHC (column 2), heptachlor (both columns), and methoxychlor (column 1). The positive 4,4-DDE and beta-BHC results were qualified as estimated (J). The non-detected 4,4-DDD and heptachlor results were qualified as estimated (UJ). No validation action was taken for delta-BHC and methoxychlor as the non-compliance occurred on only one column and the results were non-detected.

The laboratory control spike had percent recoveries greater than the upper control limit for 4,4-DDE (column 1) and 4,4'-DDD (column 2). The positive 4,4-DDE result was qualified as estimated (J). No validation action was taken for 4,4-DDD because the results were non-detected.

Sample NTC17PCSD50 had percent recoveries > 125% for surrogate tertrachloro-m-xylene (column 1 and 2). All positive results were qualified as estimated (J).

The relative percent difference between columns was greater than 40% for 4,4-DDE, 4,4-DDT, dieldrin, endrin aldehyde, and endrin ketone results. All positive results were qualified as estimated (J).

Metals:

The matrix spike duplicate had a percent recovery < 80% for mercury. Matrix spike percent recoveries were within control limits. Both samples were affected. Positive results were qualified as estimated (J).

Notes

The following contaminant was detected in preparation blank at the following maximum concentration:

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Concentration	Level
Zinc	0.26 mg/kg	1.3 mg/kg

TO: B. Davis-PAGE 3

DATE: 7/17/2012

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot, percent solids, and dilution factors were taken into consideration when evaluating for blank contamination. No validation action was warranted as sample results were greater than the blank action level.

All positive pesticide and PCB results were reported from column one. Reporting of the results in this fashion is not consistent with the SW846 8000 methodology requirements and the SAP; however, no action was taken by the data reviewer.

PAH, pesticide, and PCB analyses were not performed on sample NTC17PCSD51-52 as per the chain of custody due to low sample volume. The project manager was notified of the issue and requested that only metals analyses be conducted.

Twenty-one compounds were reported for the pesticide fraction instead of the seven referenced in the SAP. No action was taken.

Executive Summary

Laboratory Performance: Initial and continuing calibration non-compliances resulted in the qualification of sample results. LCS non-compliances resulted in the qualification of sample results.

Other Factors Affecting Data Quality: Surrogate non-compliances resulted in the qualification of sample results. Non-compliances for percent differences between columns for pesticides resulted in the qualification of sample results.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", October 2004, "National Functional Guidelines for Organic Review", October 1999 and the DOD document entitled "Quality System Manual (QSM) for Environmental Laboratories" (April, 2009).

The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra/Tech Megan Carson

Chemist/Data Validator

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
Other problems (can encompass a number of issues; i.e.chromatography,interferences,

Q = etc.

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is less than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

PROJ_NO: 02120	NSAMPLE	NTC17PCSD5	0				
SDG: 1206096	LAB_ID	1206096-01					
FRACTION: PAH	SAMP_DATE	6/14/2012					
MEDIA: SEDIMENT	QC_TYPE	NM					
	UNITS	MG/KG	MG/KG				
	PCT_SOLIDS	92.0					
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD			
2-METHYLNAPHTHALENE		0.0357	U				
ACENAPHTHENE		0.0808					
ACENAPHTHYLENE		0.0357	U				
ANTHRACENE		0.165					
BENZO(A)ANTHRACENE		0.722					
BENZO(A)PYRENE		0.922					
BENZO(B)FLUORANTHEN	E	1.11					
BENZO(G,H,I)PERYLENE		0.552					
BENZO(K)FLUORANTHEN	E	1.02					
CHRYSENE		1.06					
DIBENZO(A,H)ANTHRACE	NE	0.123					
FLUORANTHENE		2.38					
FLUORENE		0.0858					
INDENO(1,2,3-CD)PYRENE	<u> </u>	0.526					
NAPHTHALENE		0.0357	U				
PHENANTHRENE		1.19					
PYRENE		1.84					

PROJ NO: 02120	NSAMPLE	NTC17PCSD5	0				
SDG: 1206096	LAB_ID	1206096-01					
FRACTION: PEST	SAMP_DATE	6/14/2012					
MEDIA: SEDIMENT	QC_TYPE	NM					
	UNITS	MG/KG					
	PCT_SOLIDS	92.0					
	DUP_OF						
PARAMETER	<u> </u>	RESULT	VQL	QLCD			
4,4'-DDD		0.00173	UJ	С			
4,4'-DDE		0.00335	j	CEPRU			
4,4'-DDT		0.00793	J	RU			
ALDRIN		0.00173	U				
ALPHA-BHC		0.00173	U				
ALPHA-CHLORDANE		0.00173	U				
BETA-BHC		0.00506	J	CR			
DELTA-BHC		0.00173	U				
DIELDRIN		0.00163	PRU				
ENDOSULFAN I		0.00173					
ENDOSULFAN II		0.00473	J_	R			
ENDOSULFAN SULFATE		0.00173	U				
ENDRIN		0.00354	J	R			
ENDRIN ALDEHYDE		0.00259	J	PRU			
ENDRIN KETONE		0.00157	J	PRU			
GAMMA-BHC (LINDANE)		0.00173	U				
GAMMA-CHLORDANE		0.00961		R			
HEPTACHLOR		0.00173		С			
HEPTACHLOR EPOXIDE		0.00173 U					
METHOXYCHLOR		0.00173	U				
TOXAPHENE		0.0878 U					

PROJ_NO: 02120	NSAMPLE	NTC17PCSD5	0					
SDG: 1206096	LAB_ID	1206096-01						
FRACTION: PCB	SAMP_DATE	6/14/2012	6/14/2012					
MEDIA: SEDIMENT	QC_TYPE	NM						
	UNITS	MG/KG						
	PCT_SOLIDS	92.0						
	DUP_OF							
PARAMETER		RESULT	VQL	QLCD				
AROCLOR-1016		0.0438	U					
AROCLOR-1221		0.0438	U					
AROCLOR-1232		0.0438	U					
AROCLOR-1242		0.0438	U					
AROCLOR-1248		0.0438	U					
AROCLOR-1254		0.0438	U					
AROCLOR-1260 ^		0.334	R					

PROJ_NO: 02120	NSAMPLE	NTC17PCSD5	0		NTC17PCSD5	51-52			
SDG: 1206096	LAB_ID	1206096-01			1206096-02				
FRACTION: M	SAMP_DATE	6/14/2012		•	6/14/2012				
MEDIA: SEDIMENT	QC_TYPE	NM			NM				
	UNITS	MG/KG			MG/KG				
	PCT_SOLIDS	92.0		•	46.6				
	DUP_OF								
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD		
ARSENIC		27			8.94				
CADMIUM		0.823			1.44				
CHROMIUM		16.3			31.9				
COPPER		104			509				
LEAD	_	62.7			258				
MERCURY		0.257	J	D	0.892	J	D		
ZINC		482			2960				

DATA USABILITY ASSESSMENT SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

1.0 INTRODUCTION

This document presents the results of the data usability assessment that was conducted to ensure that the amount, type, and quality of data are sufficient to achieve the objectives of the sediment characterization report. Three primary types of data were conducted as part of this investigation: 1) sediment chemistry data, 2) benthic community survey data, and, 3) sediment toxicity test data. This document includes review of a field sample collection efforts for issues that may impact data and a data quality review (DQR).

2.0 COLLECTION OF DATA

Samples were collected from all sampling locations identified in the SAP. All analyses identified in the SAP were performed with the exception of grain size. Sediment samples collected for chemistry analysis were analyzed for additional parameters (total organic carbon and pH) to help describe habitat conditions and assist in understanding spatial distribution and magnitude of the contamination. However, the sediment samples were inadvertently not analyzed for grain size. The absence of grain size data did not impact the results of the investigation because the pebble count conducted as part of the benthic invertebrate study was adequate to characterize the sediment substrate. Also, grain size data were available from a previous sampling event. Although three suspended sediment samples were proposed for collection in the SAP, only two were collected. The sediment from locations NTC17PCSD51 and NTC17PCSD52 were combined into a single sample in order to obtain sufficient sample for analysis. However, the combined sample NTCPCSD51-52 only provided enough sediment for metals analysis, so analysis of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides could not be conducted. The stormwater pipes associated with NTC17PCSD51 and NTC17PCSD52 generally collect from the same area so combining the sediment did not impact the conclusions of the report. Similarly, not having PAH, PCB, or pesticide data from this sample did not impact the conclusions of the report because it was just a second line of evidence regarding whether there is a continuing source of contaminants to Pettibone Creek upstream of the NSGL property. That question was answered by the upstream sediment chemistry results. No other deviations from the SAP occurred. No issues (e.g., potential contamination by samplers) were noted during sampling collection that would potentially impact the data.

3.0 DATA QUALITY REVIEW

This document contains a description of the DQR processes used to determine whether analytical laboratory data were of acceptable technical quality for use in decision making. The review began with data validation, which is a comparison of data quality indicators (DQIs) against prescribed acceptance criteria. The DQIs used are measures to assess the bias and precision of the analytical calibrations and sample analyses. The output of this review was a set of alphabetic flags such as "U," "J," "R," or combinations thereof, that may have been assigned to individual results based on the validation effort. These flags were used to infer the general quality of the data. Also evaluated were the measures of data completeness, sensitivity, comparability and representativeness.

3.1 Data Validation Process

In accordance with Navy requirements for this project, Tetra Tech validated 25 percent of analytical laboratory results. Sample data validation generally followed the guidelines presented in EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (1999), and EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Validation (2004). The remaining 75 percent of the laboratory results had a significant but less rigorous level of validation. If data anomalies were apparent, the Data Validation Manager required a more detailed examination of data based on quality assurance (QA) concerns. The less rigorous validation focuses on sample integrity, adherence to sample holding times, detection limit achievement, accuracy of agreement between hard copy and electronic copy data, field duplicate precision, and blank contamination.

Data validation specifications require that various data qualifiers be assigned when a deficiency is detected or when a result is less than its detection limit. If no qualifier is assigned to a result that has been validated, the data user is assured that no technical deficiencies were identified during validation. The qualification flags used are defined below:

U – Indicates that the chemical was not detected at the numerical detection limit (sample-specific detection limit) noted. Non-detected results from the laboratory are reported in this manner. This qualifier is also added to a positive result (reported by the laboratory) if the detected concentration is determined to be attributable to contamination introduced during field sampling or laboratory analysis.

UJ – Indicates that the chemical was not detected; however, the detection limit (sample-specific detection limit) is considered to be estimated based on problems encountered during laboratory analysis. The associated numerical detection limit may be inaccurate or imprecise.

J – Indicates that the chemical was detected; however, the associated numerical result is not a precise representation of the concentration that is actually present in the sample. The laboratory reported concentration is considered to be an estimate of the true concentration.

UR – Indicates that the chemical may or may not be present. The non-detected analytical result reported by the laboratory is considered to be unreliable and unusable. This qualifier is applied in cases of gross technical deficiencies (i.e., holding times missed by a factor of two or more times the specified time limit, severe calibration non-compliances, and extremely low quality control recoveries).

R – Indicates that the chemical may or not be present. The positive analytical result reported by the laboratory is considered to be unreliable and unusable. The application of this qualifier is for cases of gross technical deficiencies.

The preceding data qualifiers categorize data as indicative of major or minor problems. Major problems result in the rejection of data and qualification with UR or R data validation qualifiers. Minor problems result in the estimation of data, and qualification with U, J, and UJ data validation qualifiers. It is noteworthy that a U qualifier does not necessarily indicate that a data deficiency exists because all non-detect values are flagged with the U qualifier regardless of whether a quality deficiency has been detected.

3.2 Data Validation Outputs

After data were validated, a list was developed of non-conformities requiring data qualifier flags that were used to alert the data user to inaccurate or imprecise data. For situations in which several QC criteria were out of specification, the data validator made professional judgments and or comments on the validity of the overall data package. The reviewer then prepared a technical memorandum presenting qualification of the data, if necessary, and the rationale for making such qualifications. The net result was a data package that had been carefully reviewed for its adherence to prescribed technical requirements. Pertinent quality estimates are summarized in a more quantitative format in the following section.

3.3 Data Quality Review

DQIs are parameters that are monitored to help establish the quality of data generated during an investigation. Some of the DQIs are generated from analysis of field samples (e.g., field duplicates) and some are generated from the analysis of laboratory samples (e.g., laboratory duplicates). Individually, field and laboratory DQIs provide measures of the performance of the respective investigative operations (field or laboratory). If individual QC results were acceptable, no validation flag was assigned to an analytical result, otherwise, a flag indicating the type of QC deficiency was assigned to the result. Table 1

lists all the data that has been qualified, along with the assigned qualifiers, qualifier codes, and reasons for the qualification. No data associated with sediment characterization investigation have been rejected and all data is considered acceptable for risk assessment.

3.3.1 Completeness

Completeness is a measure of the number of valid samples or measurements that are available relative to the number of samples or measurements that were intended to be generated. For this project, completeness was measured on two different bases: samples collected and laboratory measurements.

- Sample completeness was a measure of the usable samples collected as compared to those intended to be collected.
- Laboratory measurement completeness was a measure of the amount of usable, valid laboratory measurements per matrix obtained for each target analyte.

Usable, valid samples (or results) were those judged, after data assessment, to represent the sampling populations and to have not been disqualified for use through data validation or additional data review. Completeness was determined using the following equation:

$$\%C = \frac{V}{T} \times 100$$

where %C = percent completeness

V = number of samples (or results) determined to be valid

T = total number of planned samples (or results)

The sample collection completeness was 100%. The laboratory analytical completeness was 100% for all analytical fractions.

3.3.2 Sensitivity

The laboratory reported all results to the limit of detection (LOD) for all compounds.

Laboratory method / preparation blanks had detections for gamma-chlordane that resulted in the qualification of seven results. Laboratory field blanks had detections that resulted in the qualification of several results for carbon disulfide and acetone. No impact on data quality is expected from the gamma-

chlordane blank contamination because the concentration in the blank does not exceed the laboratory limit of quantitation.

The laboratory could not meet the project screening levels for several analytes as outlined in the project sampling and analysis plan. In addition, sample dilution and percent solids increased the laboratory reporting limit of nondetected results for several other analytes causing additional exceedences of the project screening levels. The risk assessment will determine the significance, if any that the nondetected exceedances of the project screening levels have upon the data set.

3.3.3 Laboratory Accuracy

Accuracy in the laboratory is measured through the comparison of a laboratory control sample (LCS) result to a known or calculated value and is expressed as a percent recovery (%R). Surrogates and internal standards assess accuracy in organic methods. LCSs assess the accuracy of laboratory operations with minimal sample matrix effects. Matrix spike and surrogate compound analyses measure the combined accuracy effects of the sample matrix, sample preparation, and sample measurement. Internal standards, added after preparation, are for sample quantitation. Laboratory accuracy is determined by comparing calculated percent recoveries to accuracy control limits specified by the laboratory using the appropriate analytical method.

Percent recovery is calculated using the following equation:

$$\%R = \frac{Ss - So}{S} \times 100$$

where %R = percent recovery

Ss = result of spiked sample

So = result of non-spiked sample

S = concentration of spiked amount.

Several results have been qualified due to accuracy noncompliances for calibration, matrix spike, laboratory control sample, surrogate, and uncertainty near the detection limit. The results qualified are presented in Table 1. Qualified results are typical and the amount of qualified results is not considered excessive. The qualified results are all considered acceptable for use in the risk assessment.

3.3.4 Laboratory Precision

Precision is a measure of the degree to which two or more measurements are in agreement and describes the reproducibility of measurements of the same parameter for samples analyzed under similar conditions.

Precision for chemical parameters is expressed as a Relative Percent Difference (RPD), which is defined as the ratio of the difference to the mean for the two values being evaluated. RPDs, typically expressed as percentages, are used to evaluate both field and laboratory duplicate precision and are calculated as follows:

$$RPD = \frac{|V1 - V2|}{(V1 + V2)/2} \times 100$$

where RPD = relative percent difference

V1, V2 = two results obtained by analyzing duplicate samples

The precision estimates obtained from duplicate field samples encompass the combined uncertainty associated with sample collection, homogenization, splitting, handling, laboratory and field storage (as applicable), preparation for analysis, and analysis. In contrast, precision estimates obtained from analyzing duplicate laboratory samples incorporate only homogenization, subsampling, preparation for analysis, laboratory storage (if applicable), and analysis uncertainties.

Field duplicate precision noncompliances resulted in the qualification of several compounds in the PAH and PEST analytical fractions. The qualified field duplicate results are considered acceptable for use in risk assessment. Laboratory duplicate imprecision did not result in any qualification of the data.

3.3.5 Comparability

Comparability is defined as the confidence with which one data set can be compared with another (e.g., among sampling points and among sampling events). Comparability was achieved by using standardized sampling and analysis methods, as well as standardized data reporting formats. Comparability of laboratory measurements was achieved primarily through the use and documentation of standard sampling and analytical methods. Results were reported in units that ensured comparability with previous data. Comparability of laboratory measurements was assessed primarily through the use of QC samples and through adherence to the sampling and analysis plan.

3.3.6 Representativeness

Representativeness is an expression of the degree to which data accurately and precisely depict the actual characteristics of a population or environmental condition existing at the site. The use of standardized sampling, sample handling, sample analysis, and data reporting procedures were designed so that the final data would be accurate representations of actual site conditions.

It is believed that all reported data are adequately representative of site conditions and intended populations.

4.0 CONCLUSIONS

The data collected for the sediment characterization report are believed to adequately represent site conditions. The amount, type, and quality of data collected are sufficient to achieve the objectives of the sediment characterization report.

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 1 OF 9

		SAMPLE		VALIDATION	QUALIFICATION	
SAMPLE ID	PARAMETER	RESULT	UNITS	QUALIFIER	CODE	REASON FOR QUALIFICATION
FD032812-01	COPPER	29.3	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
FD032812-01	MERCURY	0.0322	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
FD032812-01	ZINC	121	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
FD032812-01	BENZO(A)ANTHRACENE	0.216	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	BENZO(A)PYRENE	0.258	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	BENZO(B)FLUORANTHENE	0.261	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	BENZO(G,H,I)PERYLENE	0.176	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	BENZO(K)FLUORANTHENE	0.272	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	CHRYSENE	0.292	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	DIBENZO(A,H)ANTHRACENE	0.0215	MG/KG	UJ	G	FIELD DUPLICATE IMPRECISION
FD032812-01	FLUORANTHENE	0.673	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	FLUORENE	0.0215	MG/KG	UJ	G	FIELD DUPLICATE IMPRECISION
FD032812-01	INDENO(1,2,3-CD)PYRENE	0.176	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	PHENANTHRENE	0.364	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	PYRENE	0.513	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	ACENAPHTHENE	0.0215	MG/KG	UJ	G	FIELD DUPLICATE IMPRECISION
FD032812-01	ANTHRACENE	0.0688	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-01	4,4'-DDD	0.00288	MG/KG	J	CGU	CALIBRATION NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION, AND RPD BETWEEN COLUMNS >40%
FD032812-01	4,4'-DDE	0.00998	MG/KG	J	EGU	LABORATORY CONROL SAMPLE RECOVERY NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION, AND RPD BETWEEN COLUMNS >40%
FD032812-01	4,4'-DDT	0.0188	MG/KG	J	CGU	CALIBRATION NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION, AND RPD BETWEEN COLUMNS >40%
FD032812-01	ENDOSULFAN II	0.0006	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
FD032812-02	CADMIUM	0.674	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
FD032812-02	ZINC	381	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
FD032812-02	TOTAL ORGANIC CARBON	20200	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE AND FIELD DUPLICATE IMPRECSION
FD032812-02	2-METHYLNAPHTHALENE	0.0453	MG/KG	UJ	G	FIELD DUPLICATE IMPRECISION
FD032812-02	ACENAPHTHENE	0.0933	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	ANTHRACENE	0.334	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	BENZO(A)ANTHRACENE	1.16	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	BENZO(A)PYRENE	1.32	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	BENZO(B)FLUORANTHENE	1.46	MG/KG	J	G	FIELD DUPLICATE IMPRECISION

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 2 OF 9

SAMPLE ID	PARAMETER	SAMPLE RESULT	UNITS	VALIDATION QUALIFIER	QUALIFICATION CODE	REASON FOR QUALIFICATION
FD032812-02	BENZO(G,H,I)PERYLENE	0.828	MG/KG	QUALIFIER	G	FIELD DUPLICATE IMPRECISION
FD032812-02	BENZO(K)FLUORANTHENE	1.34	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	CHRYSENE	1.57	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
1 0002012 02				3		MATRIX SPIKE RECOVERY NONCOMPLIANCE AND
FD032812-02	DIBENZO(A,H)ANTHRACENE	0.267	MG/KG	J	DG	FIELD DUPLICATE IMPRECSION
FD032812-02	FLUORANTHENE	3.7	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	FLUORENE	0.109	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	INDENO(1.2.3-CD)PYRENE	0.778	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	NAPHTHALENE	0.0453	MG/KG	UJ	G	FIELD DUPLICATE IMPRECISION
FD032812-02	PHENANTHRENE	1.93	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	PYRENE	2.91	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
FD032812-02	4,4'-DDD	0.0153	MG/KG	J	CU	CALIBRATION NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%
FD032812-02	4,4'-DDE	0.0417	MG/KG	J	EU	LABORATORY CONROL SAMPLE RECOVERY NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%
FD032812-02	4,4'-DDT	0.00739	MG/KG	J	CGU	CALIBRATION NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION, AND RPD BETWEEN COLUMNS >40%
FD032812-02	GAMMA-CHLORDANE	0.00217	MG/KG	J	GU	FIELD DUPLICATE IMPRECISION AND RPD BETWEEN COLUMNS >40%
NTC17PCSD53	CADMIUM	0.445	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD53	ZINC	384	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD53	TOTAL ORGANIC CARBON	22000	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD53	2-METHYLNAPHTHALENE	0.212	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	ACENAPHTHENE	1.41	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	ANTHRACENE	2.43	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	BENZO(A)ANTHRACENE	6.38	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	BENZO(A)PYRENE	5.69	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	BENZO(B)FLÚORANTHENE	5.76	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	BENZO(G,H,I)PERYLENE	2.82	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	BENZO(K)FLUORANTHENE	6.15	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	CHRYSENE	7.07	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	DIBENZO(A,H)ANTHRACENE	0.933	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	FLUORANTHENE	18.4	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	FLUORENE	1.44	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	INDENO(1,2,3-CD)PYRENE	3.13	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	NAPHTHALENE	0.473	MG/KG	J	G	FIELD DUPLICATE IMPRECISION

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 3 OF 9

SAMPLE ID	PARAMETER	SAMPLE RESULT	UNITS	VALIDATION QUALIFIER	QUALIFICATION CODE	REASON FOR QUALIFICATION
NTC17PCSD53	PHENANTHRENE	13.4	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	PYRENE	14.5	MG/KG	J	G	FIELD DUPLICATE IMPRECISION
NTC17PCSD53	4,4'-DDD	0.0138	MG/KG	J	CDU	CALIBRATION AND MATRIX SPIKE RECOVERY NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%
NTC17PCSD53	4,4'-DDE	0.0629	MG/KG	J	DEU	MATRIX SPIKE AND LABORATORY CONROL SAMPLE NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%
NTC17PCSD53	4,4'-DDT	0.0311	MG/KG	J	CDGU	CALIBRATION AND MATRIX SPIKE NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION, AND RPD BETWEEN COLUMNS >40%
NTC17PCSD53	ALDRIN	0.000481	MG/KG	UJ	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD53	ENDOSULFAN II	0.00187	MG/KG	J	CR	CALIBRATION AND SURROGATE RECOVERY NONCOMPLIANCE
NTC17PCSD53	GAMMA-CHLORDANE	0.00567	MG/KG	U	А	LABORATORY BLANK CONTAMINATION
NTC17PCSD54	COPPER	43.5	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD54	4,4'-DDD	0.0197	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD54	4,4'-DDE	0.0491	MG/KG	J	E	LABORATORY CONTROL SAMPLE RECOVERY NONCOMPLIANCE
NTC17PCSD54	4,4'-DDT	0.00814	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD55	CADMIUM	0.398	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD55	COPPER	222	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD55	AROCLOR-1260	0.0352	MG/KG	J	E	LABORATORY CONTROL SAMPLE RECOVERY NONCOMPLIANCE
NTC17PCSD55	4,4'-DDD	0.025	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD55	4,4'-DDE	0.036	MG/KG	J	E	LABORATORY CONTROL SAMPLE RECOVERY NONCOMPLIANCE
NTC17PCSD55	4,4'-DDT	0.0342	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD55	ALPHA-CHLORDANE	0.00059	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD55	ENDOSULFAN II	0.00228	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD55	GAMMA-CHLORDANE	0.0006	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD56	CADMIUM	0.451	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD56	COPPER	62.2	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD56	ACENAPHTHENE	0.078	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 4 OF 9

	1		I	ı		
		SAMPLE		VALIDATION	QUALIFICATION	
SAMPLE ID	PARAMETER	RESULT	UNITS	QUALIFIER	CODE	REASON FOR QUALIFICATION
						CALIBRATION AND LABORAOTRY CONROL SAMPLE
	ADOC! OD 4260	0.0500	MOWO		CED	RECOVERY NONCOMPLIANCE AND UNCERTAINTY
	AROCLOR-1260	0.0586	MG/KG	J	CEP	NEAR DETECTION LIMIT AND RPD BETWEEN
NTC17PCSD56						COLUMNS >40%
NTC17PCSD56	4,4'-DDD	0.236	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
	4,4'-DDE	0.131	MG/KG	J	Е	LABORATORY CONTROL SAMPLE RECOVERY
NTC17PCSD56	4,4 -DDE	0.131	IVIG/NG	J	<u> </u>	NONCOMPLIANCE
NTC17PCSD56	4,4'-DDT	0.0526	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD56	ENDOSULFAN II	0.00333	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD56	GAMMA-CHLORDANE	0.00666	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD57	COPPER	37.2	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD57	4,4'-DDD	0.00203	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
	4.4'-DDE	0.00411	MG/KG	J	Е	LABORATORY CONTROL SAMPLE RECOVERY
NTC17PCSD57	4,4 -DDE	0.00411	IVIG/NG	J	<u> </u>	NONCOMPLIANCE
	4,4'-DDT	0.00063	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY
NTC17PCSD57	4,4-001	0.00063	IVIG/NG	J	CP	NEAR DETECTION LIMIT
NTC17PCSD57	GAMMA-CHLORDANE	0.00329	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD58	MERCURY	0.0329	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD58	ZINC	107	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD58	ACENAPHTHENE	0.0215	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD58	DIBENZO(A,H)ANTHRACENE	0.0424	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD58	4,4'-DDD	0.00249	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
	4,4'-DDT	0.00073	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY
NTC17PCSD58	4,4-001	0.00073	IVIG/NG	J	CF	NEAR DETECTION LIMIT
NTC17PCSD58	ALPHA-CHLORDANE	0.00029	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
	ENDOSULFAN II	0.0004	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY
NTC17PCSD58	LINDOSOLI AIN II	0.0004		J	CF	NEAR DETECTION LIMIT
NTC17PCSD58	GAMMA-CHLORDANE	0.00315	MG/KG	U	А	LABORATORY BLANK CONTAMINATION
NTC17PCSD59	COPPER	46.2	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD59	ANTHRACENE	0.0805	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD59	4,4'-DDD	0.00637	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
	4.4'-DDE	0.0139	MG/KG	J	Е	LABORATORY CONTROL SAMPLE RECOVERY
NTC17PCSD59	4,4 -DDL	0.0139	IVIG/NG	J	L	NONCOMPLIANCE
NTC17PCSD59	4,4'-DDT	0.00559	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD59	ENDOSULFAN II	0.00027	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
	GAMMA-CHLORDANE	0.00081	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY
NTC17PCSD59	GAIVIIVIA-OFILORDANE	0.00001	IVIG/NG	J	UF .	NEAR DETECTION LIMIT
NTC17PCSD60	CADMIUM	0.454	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 5 OF 9

CAMPLEID	DADAMETER	SAMPLE RESULT	UNITS	VALIDATION QUALIFIER	QUALIFICATION	DEASON FOR QUALIFICATION			
SAMPLE ID NTC17PCSD60	PARAMETER COPPER	89.6	MG/KG	J	CODE D	REASON FOR QUALIFICATION MATRIX SPIKE RECOVERY NONCOMPLIANCE			
NTC17PCSD60	NAPHTHALENE	0.0712	MG/KG	J	P	UNCERTAINTY NEAR DETECTION LIMIT			
NTC17PCSD60	4.4'-DDD	0.0712	MG/KG	J	C	CALIBRATION NONCOMPLIANCE			
NTCT/FCSD60	4,4 -000	0.0216	WG/KG	J	C	LABORATORY CONTROL SAMPLE RECOVERY			
NTC17PCSD60	4,4'-DDE	0.0259	MG/KG	J	E	NONCOMPLIANCE			
NTC17PCSD60	4,4'-DDT	0.0361	MG/KG	J	С	CALIBRATION NONCOMPLIANCE			
NTC17PCSD61	COPPER	28.5	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE			
NTC17PCSD61	MERCURY	0.0289	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT			
NTC17PCSD61	ZINC	85.5	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE			
NTC17PCSD61	TOTAL ORGANIC CARBON	11000	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE			
NTC17PCSD61	2-METHYLNAPHTHALENE	0.0408	MG/KG	J	DP	MATRIX SPIRE RECOVERY NONCOMPLIANCE AT UNCERTAINTY NEAR DETECTION LIMIT			
NTC17PCSD61	ACENAPHTHENE	0.165	MG/KG	J	DG	MATRIX SPIKE RECOVERY NONCOMPLIANCE AND FIELD DUPLICATE IMPRECSION			
NTC17PCSD61	ANTHRACENE	0.564	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	BENZO(A)ANTHRACENE	0.955	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	BENZO(A)PYRENE	0.933	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	BENZO(B)FLUORANTHENE	0.943	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	BENZO(G,H,I)PERYLENE	0.609	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	BENZO(K)FLUORANTHENE	0.919	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	CHRYSENE	1.04	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	DIBENZO(A,H)ANTHRACENE	0.252	MG/KG	J	DG	MATRIX SPIKE RECOVERY NONCOMPLIANCE AND FIELD DUPLICATE IMPRECSION			
NTC17PCSD61	FLUORANTHENE	3.02	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	FLUORENE	0.237	MG/KG	J	DG	MATRIX SPIKE RECOVERY NONCOMPLIANCE AND FIELD DUPLICATE IMPRECSION			
NTC17PCSD61	INDENO(1,2,3-CD)PYRENE	0.568	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	NAPHTHALENE	0.0306	MG/KG	J	DP	MATRIX SPIKE RECOVERY NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT			
NTC17PCSD61	PHENANTHRENE	2.39	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	PYRENE	2.22	MG/KG	J	G	FIELD DUPLICATE IMPRECISION			
NTC17PCSD61	4,4'-DDD	0.00829	MG/KG	J	CDGU	CALIBRATION AND MATRIX SPIKE NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION, AND RPD BETWEEN COLUMNS >40%			

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 6 OF 9

Г		1		I							
		SAMPLE		VALIDATION	QUALIFICATION						
SAMPLE ID	PARAMETER	RESULT	UNITS	QUALIFIER	CODE	REASON FOR QUALIFICATION					
	4,4'-DDE	0.0179	MG/KG	J	EGU	LABORATORY CONROL SAMPLE RECOVERY NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION,					
NTC17PCSD61						AND RPD BETWEEN COLUMNS >40%					
NTC17PCSD61	4,4'-DDT	0.00456	MG/KG	J	CDGU	CALIBRATION AND MATRIX SPIKE NONCOMPLIANCE, FIELD DUPLICATE IMPRECISION, AND RPD BETWEEN COLUMNS >40%					
NTC17PCSD61	ENDOSULFAN II	0.00046	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD61	GAMMA-CHLORDANE	0.00068	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD62	CADMIUM	0.789	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD62	COPPER	50.6	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE					
NTC17PCSD62	ACENAPHTHENE	0.0613	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD62	AROCLOR-1260	0.0263	MG/KG	J	E	LABORATORY CONTROL SAMPLE RECOVERY NONCOMPLIANCE					
NTC17PCSD62	4.4'-DDD	0.0427	MG/KG	J	С	CALIBRATION NONCOMPLIANCE					
NTC17PCSD62	4,4'-DDE	0.0366	MG/KG	J	E	LABORATORY CONTROL SAMPLE RECOVERY NONCOMPLIANCE					
NTC17PCSD62	4,4'-DDT	0.0432	MG/KG	J	С	CALIBRATION NONCOMPLIANCE					
NTC17PCSD62	ALDRIN	0.00055	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD62	ENDOSULFAN II	0.00023	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD62	GAMMA-CHLORDANE	0.00028	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD63	CADMIUM	0.39	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD63	COPPER	70.3	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE					
NTC17PCSD63	FLUORENE	0.0515	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD63	4,4'-DDD	0.0665	MG/KG	J	С	CALIBRATION NONCOMPLIANCE					
NTC17PCSD63	4,4'-DDE	0.112	MG/KG	J	E	LABORATORY CONTROL SAMPLE RECOVERY NONCOMPLIANCE					
NTC17PCSD63	4,4'-DDT	0.134	MG/KG	J	С	CALIBRATION NONCOMPLIANCE					
NTC17PCSD63	GAMMA-CHLORDANE	0.00185	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD64	COPPER	92.3	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE					
NTC17PCSD64	ACENAPHTHENE	0.0724	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT					
NTC17PCSD64	4,4'-DDD	0.0484	MG/KG	J	С	CALIBRATION NONCOMPLIANCE					
NTC17PCSD64	4,4'-DDE	0.0425	MG/KG	J	Е	LABORATORY CONTROL SAMPLE RECOVERY NONCOMPLIANCE					
NTC17PCSD64	4.4'-DDT	0.0662	MG/KG	J	С	CALIBRATION NONCOMPLIANCE					

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 7 OF 9

SAMPLE ID	PARAMETER	SAMPLE RESULT	UNITS	VALIDATION QUALIFIER	QUALIFICATION CODE	REASON FOR QUALIFICATION
NTC17PCSD64	GAMMA-CHLORDANE	0.00046	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD65	ZINC	91.8	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD65	ANTHRACENE	0.0399	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD65	DIBENZO(A,H)ANTHRACENE	0.038	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD65	4,4'-DDD	0.00608	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD65	4,4'-DDT	0.0008	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD65	ALDRIN	0.00029	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD65	ENDOSULFAN II	0.00057	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD65	GAMMA-CHLORDANE	0.00318	MG/KG	U	Α	LABORATORY BLANK CONTAMINATION
NTC17PCSD66	ZINC	144	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD66	ACENAPHTHENE	0.0622	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD66	4,4'-DDD	0.0234	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD66	4,4'-DDT	0.00469	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD66	GAMMA-CHLORDANE	0.00065	MG/KG	U	Α	LABORATORY BLANK CONTAMINATION
NTC17PCSD67	ZINC	104	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD67	DIBENZO(A,H)ANTHRACENE	0.0922	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD67	4,4'-DDD	0.0147	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD67	4,4'-DDT	0.00915	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD67	ALDRIN	0.00051	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD67	GAMMA-CHLORDANE	0.00079	MG/KG	U	Α	LABORATORY BLANK CONTAMINATION
NTC17PCSD68	CADMIUM	0.0866	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD68	ZINC	96	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD68	4,4'-DDD	0.0254	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD68	4,4'-DDT	0.00414	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD68	ALDRIN	0.00069	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD68	ENDOSULFAN II	0.00118	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD68	GAMMA-CHLORDANE	0.00192	MG/KG	Ü	A	LABORATORY BLANK CONTAMINATION
NTC17PCSD69	ZINC	146	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD69	ACENAPHTHENE	0.0604	MG/KG	J	P	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD69	FLUORENE	0.0872	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD69	4,4'-DDD	0.0063	MG/KG	J	C	CALIBRATION NONCOMPLIANCE
NTC17PCSD69	4,4'-DDT	0.00794	MG/KG	J	C	CALIBRATION NONCOMPLIANCE
NTC17PCSD69	ENDOSULFAN II	0.00165	MG/KG	J	C	CALIBRATION NONCOMPLIANCE
NTC17PCSD69	GAMMA-CHLORDANE	0.00037	MG/KG	U	A	LABORATORY BLANK CONTAMINATION

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 8 OF 9

	Т			ı		
		SAMPLE		VALIDATION	QUALIFICATION	
SAMPLE ID	PARAMETER	RESULT	UNITS	QUALIFIER	CODE	REASON FOR QUALIFICATION
NTC17PCSD70	CADMIUM	2.4	MG/KG	J	P	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD70	COPPER	390	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD70	ZINC	1580	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD70	AROCLOR-1260	0.0707	MG/KG	J	EU	LABORATORY CONROL SAMPLE RECOVERY NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%
NTC17PCSD70	4,4'-DDD	0.00079	MG/KG	J	CPRU	CALIBRATION AND SURROGATE RECOVERY NONCOMPLIANCE, UNCERTAINTY NEAR DETECTION LIMIT AND RPD BETWEEN COLUMNS >40%
NTC17PCSD70	4,4'-DDE	0.00221	MG/KG	J	EU	LABORATORY CONROL SAMPLE RECOVERY NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%
NTC17PCSD70	4,4'-DDT	0.000734	MG/KG	UJ	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD70	ENDOSULFAN II	0.00224	MG/KG	J	U	RPD BETWEEN COLUMNS >40%
NTC17PCSD70	GAMMA-CHLORDANE	0.00392	MG/KG	J	U	RPD BETWEEN COLUMNS >40%
NTC17PCSD71	CADMIUM	1.32	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD71	COPPER	251	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD71	ACENAPHTHENE	0.165	MG/KG	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD71	4,4'-DDD	0.00087	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD71	4,4'-DDE	0.00036	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD71	4,4'-DDT	0.00375	MG/KG	J	С	CALIBRATION NONCOMPLIANCE
NTC17PCSD71	ALDRIN	0.00072	MG/KG	J	СР	CALIBRATION NONCOMPLIANCE AND UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD72	COPPER	94.3	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD72	ZINC	300	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD72	TOTAL ORGANIC CARBON	12900	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD72	AROCLOR-1260	0.025	MG/KG	J	EU	LABORATORY CONROL SAMPLE RECOVERY NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%
NTC17PCSD72	4,4'-DDD	0.00096	MG/KG	J	CRU	CALIBRATION AND SURROGATE RECOVERY NONCOMPLIANCE AND RPD BETWEEN COLUMNS >40%

SEDIMENT QUALIFIED DATA SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS PAGE 9 OF 9

		1		I		
		SAMPLE		VALIDATION	QUALIFICATION	
SAMPLE ID	PARAMETER	RESULT	UNITS	QUALIFIER	CODE	REASON FOR QUALIFICATION
						CALIBRATION, LABORAOTRY CONROL SAMPLE, AND
	4.4'-DDE	0.00037	MG/KG		CEPRU	SURROGATE RECOVERY NONCOMPLIANCE,
	4,4 -006	0.00037	IVIG/NG	J	CEPRO	UNCERTAINTY NEAR DETECTION LIMIT AND RPD
NTC17PCSD72						BETWEEN COLUMNS >40%
						CALIBRATION AND SURROGATE RECOVERY
	4,4'-DDT	0.00414	MG/KG	J	CRU	NONCOMPLIANCE AND RPD BETWEEN COLUMNS
NTC17PCSD72						>40%
NTC17PCSD72	GAMMA-CHLORDANE	0.00301	MG/KG	J	U	RPD BETWEEN COLUMNS >40%
RB033012-01	BENZO(A)ANTHRACENE	0.0475	UG/L	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
RB033012-01	FLUORANTHENE	0.112	UG/L	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
RB033012-01	PHENANTHRENE	0.102	UG/L	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
RB033012-01	PYRENE	0.0813	UG/L	J	Р	UNCERTAINTY NEAR DETECTION LIMIT
NTC17PCSD50	MERCURY	0.257	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE
NTC17PCSD50	AROCLOR-1260	0.334	MG/KG	J	R	SURROGATE RECOVERY NONCOMPLIANCE
NTC17PCSD50	4,4'-DDD	0.00173	MG/KG	UJ	С	CALIBRATION NONCOMPLIANCE
						CALIBRATION, LABORATORY CONROL SAMPLE AND
						SURROGATE RECOVERY NONCOMPLIANCE,
						UNCERTAINTY NEAR DETECTION LIMIT AND RPD
NTC17PCSD50	4,4'-DDE	0.00335	MG/KG	J	CEPRU	BETWEEN COLUMNS >40%
						SURROGATE RECOVERY NONCOMPLIANCE AND RPD
NTC17PCSD50	4,4'-DDT	0.00793	MG/KG	J	RU	BETWEEN COLUMNS >40%
NTC17PCSD50	ENDOSULFAN II	0.00473	MG/KG	J	R	SURROGATE RECOVERY NONCOMPLIANCE
NTC17PCSD50	GAMMA-CHLORDANE	0.00961	MG/KG	J	R	SURROGATE RECOVERY NONCOMPLIANCE
NTC17PCSD51-52	MERCURY	0.892	MG/KG	J	D	MATRIX SPIKE RECOVERY NONCOMPLIANCE

Notes:

Field duplicate pairs are FD032812-01/NTC17PCSD61 and FD032812-02/NTC17PCSD53.

APPENDIX D

SAMPLE SELECTION FOR TOXICITY TESTING

Selection of Samples for Toxicity Testing Site 17 – Pettibone Creek Naval Station Great Lakes Great Lakes, Illinois

This memorandum presents the samples that are proposed for selection of toxicity testing at Site 17 - Pettibone Creek. The procedures for conducting the tests are presented in the Sampling and Analysis Plan (SAP). In summary, 10-day tests using *Hyalella Azteca* will be conducted on the selected samples with survival and growth as the endpoints. The tests will be conducted in accordance with the current ASTM Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates (E1706 – 05).

Figure 1 shows the locations of the 2011 sediment samples in Pettibone Creek, while Table 1 presents the chemical data and some selected benthic community metrics for the samples where chemical data and the benthic community data were collected. In accordance with the SAP, sediment from locations NTCSDPCSD55 through SD57 and SD70 through SD72 were only collected for chemical analysis, not for toxicity testing, so the results are not included in Table 1.

Table 1 also presents the chemical concentrations in each sample compared to the Threshold Effects Concentrations (TECs) and the Probably Effects Concentrations (PECs), and indicates which samples are recommended for toxicity testing. Figures 2 through 5 present plots of the chemical data (copper, lead, zinc, and total PAHs, respectively) for the samples that are proposed for toxicity testing.

Based on the results in Table 1, samples were selected to obtain a range of concentrations for copper, lead, zinc, and total PAHs because the other parameters are unlikely to cause toxicity or elicit a dose response relationship based on their relatively low concentrations. In fact, based on the chemical concentrations with respect to the PEC (or similar value for PAHs), it is more likely that dose-response relationships will only be determined for zinc and PAHs (if toxicity is observed at all), based on their higher concentrations with respect to their sediment benchmarks.

The range of sample concentrations for the samples selected for toxicity testing can be seen on Figures 2 through 5. From these figures, it can be seen that the selected samples represents a concentration gradient from low to high, based on the results in the collected samples at the site.

Table 1

Selection of Sediment Samples for Toxicity Testing Based on Chemical Concentrations and Benthic Community Health Data Site 17 - Pettibone Creek Naval Station Great Lakes Great Lakes, Illinois

			Che	mical Conc	entration ((mg/kg)			Bentl	hic Commu	ınity Health	Data	
								Total Organic					
Sample							Total	Carbon		Total	EPT Pct		
Location	Site/ Reference	Copper	Lead	Mercury	Zinc	Total PAHs	DDT	(mg/kg)	mlBl	Taxa	Score	Density	Rationale
Scre	ening Level (TEC)	31.6	35.8	0.18	121	4 ⁽¹⁾	0.001 ⁽²⁾	NA	NA	NA	NA	NA	
Higher E	ffects Level (PEC)	149	128	1.06	459	35 ⁽¹⁾	0.572	NA	NA	NA	NA	NA	
Site Samples	Site Samples												
NTC17PCSD53	Site	68.3	96.7	0.17	384	90.2	0.108	22000	14	21	0	1806	High PAHs and metals
NTC17PCSD54	Site	43.5	30	0.124	131	34.7	0.077	18900	19.4	22	0.49	2085	High PAHs and moderate-low metals
NTC17PCSD58	Site, tributary	34.7	29	0.0329	107	3.54	0.010	11900	10.4	13	0	1389	
NTC17PCSD59	Site	46.2	29.6	0.0652	141	5.11	0.026	11600	12.6	20	2.36	2419	
NTC17PCSD60	Site	89.6	56.8	0.132	329	25.0	0.084	36700	17.2	25	7.36	837	Moderate PAHs and high metals
NTC17PCSD61	Site	28.5	15.4	0.0289	85.5	14.9	0.031	11000	21.3	25	4.5	984	Low-Moderate PAHs and low metals
NTC17PCSD62	Site	50.6	33.7	0.171	56.7	10.81	0.123	24100	20.8	28	0.52	1157	
NTC17PCSD63	Site	70.3	102	0.157	299	9.18	0.313	10200	23.5	30	0.9	2595	Low-Moderate PAHs and high metals
NTC17PCSD64	Site	92.3	64.8	0.22	357	15.0	0.157	22100	20.2	24	2.81	5569	Moderate PAHs and high metals
Reference Samp													·
	Reference	26.6	24	0.0654	91.8	2.35	0.013	13900	21.3	21	4.83	3980	
	Reference	36.8	33.8	0.169	144	9.10	0.054	18100	24.1	29	4.67	2565	Reference (low PAHs and metals)
	Reference	31	25.8	0.632	104	8.05	0.046	29000	30.3	31	4.9	2741	
NTC17PCSD68	Reference	27.4	24.6	0.203	96	2.75	0.062	21500	30.5	30	1.01	4388	Reference (low PAHs and metals)
NTC17PCSD69	Reference, tributary	40.6	53.6	0.061	146	16.2	0.028	33100	13.3	17	4.1	2756	

Notes:

TEC - Threshold Effects Concentration (unless otherwise noted)

PEC - Probable Effects Concentration (unless otherwise noted)

Sample concentration exceeds the TEC (or other similar value) Sample concentration exceeds the PEC (or other similar value)

Sample selected for toxicity testing

- 1 Illinois EPA Tier 1 Draft Illinois EPA Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments (Illinois EPA, September 2000)
- 2 Baseline sediment screening objective calculated by Illinois EPA using unpublished derived water quality criteria (Brian Conrath, personal communication, February 05, 2002). Value is for 4,4'-DDT.

APPENDIX E TOXICITY TESTING REPORT AND TOXICITY CONCENTRATION PLOTS

Results of 10 day Sediment Toxicity Tests with *Hyalella azteca* for Naval Station Great Lakes

Submitted to:
Mr. Robert Davis
Tetra Tech, Inc.
661 Andersen Drive
Foster Plaza 7
Pittsburgh, PA 15220
Phone: 412-921-7251

Prepared by: Tetra Tech, Inc. 400 Red Brook Boulevard, Suite 200 Owings Mills, Maryland 21117

May 30, 2012

Tetra Tech NUS 10-day Sediment Toxicity

SUMMARY

CLIENT: Tetra Tech NUS

TEST FACILITY: Naval Station Great Lakes

TEST MATERIAL: Sediment from 8 sites, plus control

DATE(S) COLLECTED: 28 – 30 March 2012

DATE(S) RECEIVED: 31 March 2012

COLLECTED BY: Chad Barbour, Tetra Tech, Inc.

CONTROL/DILUTION

WATER: Moderately Hard Reconstituted Water

TYPE OF TEST(S): 10-Day Sediment Toxicity using *Hyalella azteca*

TEST DATE(S): 15 – 25 May, 2012

TEST RESULTS:

TABLE 1. SUMMARY OF TEST RESULTS

Site	Mean % Survival	Mean Weight of Survivors (mg)	Mean Individual Weight based on 10 Organisms per Chamber (mg)
Control	97.5	0.08925	0.0875
NTC17PCSD53	88.8	0.1160	0.1025
NTC17PCSD54	92.5	0.1286	0.1175
NTC17PCSD60	86.3	0.1069	0.0912
NTC17PCSD61	93.8	0.0955	0.0875
NTC17PCSD63	93.8	0.1281	0.1200
NTC17PCSD64	82.5	0.1030	0.0825
NTC17PCSD66*	95	0.1606	0.1500
NTC17PCSD68*	87.5	0.1240	0.1088

^{*} Reference Site

MATERIALS AND METHODS

TEST MATERIAL

One gallon of sediment for each of 14 sites was collected by Tetra Tech personnel. The samples were transported in one gallon plastic ziploc bags on ice to Tetra Tech's Biological Research Facility. Upon arrival, the sample identification, collection date and time were recorded on the sample chain-of-custody sheet (see Appendix A Chain-of-Custody). Temperature of sediment was recorded upon arrival by measuring the temperature blank (water) packed with sediment. Temperature in all blanks was < 4° C and was recorded on the chain-of-custody sheet. Of the 14 sites sampled, only 8 were selected for toxicity testing.

CONTROL/DILUTION WATER

The control/dilution water used for the *Hyalella azteca* 10-day sediment toxicity test was moderately hard reconstituted water with a hardness of 96 mg/L as CaCO₃ and an alkalinity of 48 mg/L as CaCO₃.

TEST ORGANISMS/AGE

Hyalella azteca, 12 to 14 days old (all within a 24 hour range in age), were obtained from ABS (Aquatic BioSystems Inc.) and Chesapeake Cultures. All organisms appeared healthy and disease free.

TEST METHODS

Samples were thoroughly homogenized in the lab in a stainless steel bowl with a Teflon spoon. During homogenization, the sediments were inspected for indigenous organisms and if found they were removed.

U.S. Environmental Protection Agency. 2000. "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates." 2nd edition. EPA/600/R-99/064. U.S. EPA, ORD, Duluth, MN.

ASTM. 2006. Standard test methods for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. E1706-05. In Annual Book of ASTM Standards, Vol. 11.06, Philadelphia, PA.

Tetra Tech Standard Operating Procedure TT-BRF/TX-SOP-O-017. 10-day Sediment Toxicity Test Using *Hyallela azteca*. Created February 3, 2012. (Internal document prepared by Tetra Tech, Inc.)

TEST CONDITIONS

A summary of the test conditions for the *H. azteca* 10-day sediment toxicity test is on page 4.

AERATION OF TEST

Due to dissolved oxygen levels below 2.5 mg/L (see Table 3), slow aeration was provided on May 24, 2012 prior to test organisms being loaded into test chambers on May 25, 2012. Dissolved oxygen levels were sufficient after the addition of aeration.

MODIFICATIONS TO PROTOCOLS

None.

COMMENTS CONCERNING TEST

Avoidance of the sediment by test organisms was observed in some site test containers, particularly sites NTC17PCSD60 and NTC17PCSD64. Organisms were inadvertently removed from test chambers during the renewal of the control, NTC17PCSD60, NTC17PCSD64, NTC17PCSD63, NTC17PCSD54, and NTC17PCSD66. The organisms were reintroduced to replicates of the same sample that they were removed from , as noted on the data sheets, but it was unknown to which replicate they were removed.

The avoidance of sediment by Hyalella azteca has been shown to be common in sediments with a very high sand content or in tests that are not fed (Ingersoll et al., 2000). The organisms were fed daily during the tests, so that would not be the reason. Although grain size analysis was not conducted, if a grain size analysis was conducted, Table 8 in Appendix B presents the percent particle size distribution for each sampling station determined by systematic random, 100-particle modified Wolman pebble count. Based on the results in the table, the grain size distribution at sites NTC17PCSD60 and NTC17PCSD64 were not remarkably different that the other sites, except that the percent of silt/clay was on the lower side.

Also, Whiteman et al. (1996) found that the 10-d LC50 for ammonia in sediment exposures with H. azteca was not reached until pore-water concentrations were nearly tenfold the water-only LB50 (at which time the ammonia concentration in the overlying water was equal to the water-only LC50). The authors attributed this discrepancy to avoidance of the sediment by H. Azteca. As seen in Appendix E, the maximum ammonia concentrations in the samples from NTC17PCSD60 and NTC17PCSD64 were elevated compared to the other stations, which may have been partially responsible for the avoidance of the sediment.

Ingersoll CG, Ivey CD, Brunson EL, Hardesty DK, and Kemble, NE. 2000. Evaluation of Toxicity: Whole Sediment Versus Overlying-Water Exposures with Amphipod Hyalella azteca. Environ. Toxicol. Chem 19: 2906-2910.

Whiteman FW, Ankley GT, Dahl MD, Rau DM, and Balcer MD. 1996. Evaluation of interstitial water as a route of exposure to ammonia in sediment tests with macroinvertebrates. Environ. Toxicol. Chem 15: 794-801.

TABLE 2. Summary of Test Conditions for *Hyalella azteca* 10-day Whole Sediment Toxicity Test.

	PARAMETER	CONDITIONS
1.	Test type	Whole-sediment toxicity test with renewal of overlying water
2.	Test duration	10-D
3.	Temperature	$23^{\circ}\text{C} \pm 1^{\circ}\text{C}$ daily mean temperature, $23 \pm 3^{\circ}\text{C}$ instantaneous temperature
4.	Light quality	Wide-spectrum fluorescent lights
5.	Light intensity	~ 500-1000 lux
6.	Photoperiod	16h light, 8h darkness
7.	Test chamber size	500 mL high-form lipless beaker
8.	Sediment volume	100 mL
9.	Overlying water volume	175 mL
10.	Renewal of overlying water	2 volume additions/d (i.e., one volume addition every 12 h)
11.	Age of test organisms:	12 - 14 days old
12.	No. organisms per test chamber	10
13.	No. replicate chambers per sample	8
14.	No. organisms per sample	80
15.	Feeding regime	Fed 1.0 mL YTC daily to each test chamber
16.	Test chamber cleaning	If screens become clogged during a test, gently brush the <u>outside</u> of the screen
17.	Aeration	Slow aeration was provided as per USEPA guidelines.
18.	Overlying water	Moderately Hard Reconstituted Water
19.	Overlying water quality	Ammonia, pH, DO, and temperature twice daily on day -2, -1 and Day 0; Hardness, alkalinity, conductivity, pH and ammonia at the beginning and end of a test. Temperature and dissolved oxygen daily during the test.
20.	Endpoint	Survival and growth (dry weight)
21.	Sampling and sample holding requirements	Samples used within 8 weeks of receipt. Samples stored in the dark at 4° C in sealed containers with no air space.
22.	Sample volume required	one gallon
23.	Test acceptability	Minimum mean control survival of 80% and measurable growth of test organisms in the control sediment. Performance-based criteria specifications outlined in Tetra Tech SOP TT-BRF/TX-SOP-O-017.

RESULTS

OVERLYING WATER PHYSICAL/CHEMICAL RESULTS

The physical/chemical results of the overlying water including: alkalinity and hardness (as mg CaCO₃), ammonia, dissolved oxygen, pH, temperature, and conductivity, are summarized in Table 3. See Appendix B Laboratory Bench Sheets for all physicochemical data.

HYALELLA AZTECA RESULTS

Hyalella azteca survival in site sediments ranged between 82.5% (NTC17PCSD64) to 95.0% (NTC17PCSD66). There was no significant difference in the survival of any site with respect to the controls or either reference location (NTC17PCSD66 or NTC17PCSD68). The results of the statistical analyses, along with significance levels, are included in Table C-1 in Appendix C Statistical Analyses.

Mean weight of survivors in all test sites was not significantly different from that in reference site NTC17PCSD68 (Table C-2; Statistics Appendix, ANOVA, Duncan Multiple Range Test, p<0.05). However, four out of 8 test sites (NTC17PCSD53; NTC17PCSD60; NTCPCSD61; and NTC17PCSD64) had significantly lower survivor weights when compared to reference site NTC17PCSD66 (Table C-2; Statistics Appendix, ANOVA, Duncan Multiple Range Test, p<0.05). The results of the statistical analysis of the mean weight of survivors, along with significance levels, are included in Table C-2 in Appendix C Statistical Analysis.

Biomass or the weight of the survivors divided by the original number of organisms placed in the test chambers yielded similar results as the survival weight analysis. In five out of the eight tests sites (NTC17PCSD53; NTC17PCSD60; NTC17PCSD61; NTC17PCSD64; and NTC17PCSD68), biomass was significantly lower than that in reference site NTC17PCSD66 (Table C-3; Statistics Appendix, ANOVA, Duncan Multiple Range Test, p<0.05). Only the other reference site, NTC17PCSD66, yielded a significant difference in comparison with reference site NTC17PCSD68 (Table C-3; Statistics Appendix, ANOVA, Duncan Multiple Range Test, p<0.05). The results of the statistical analysis, along with significance levels, are included in Table C-3 in Appendix C Statistical Analysis.

COMMENTS CONCERNING TEST RESULTS

Test acceptability criteria were met for *H. azteca* for this test as evidenced by >80% survival in the controls and measurable growth. Average initial weight of *H. azteca* was 0.066 mg/individual (see Appendix B Laboratory Bench Sheets) and average final weight of the controls was 0.089 mg/individual.

QUALITY ASSURANCE/QUALITY CONTROL

Reference toxicant test data are included in Appendix D Quality Assurance/Quality Control.

Tetra Tech NUS 10-day Sediment Toxicity

TABLE 3. SUMMARY OF WATER QUALITY AND TEST DATA FOR *Hyalella azteca* 10-DAY SEDIMENT TOXICITY TEST

Client: Tetra Tech NUS								
Experiment ID: Tt01291 – Tt01299	Start Test	5-15-12						
Sample Tested: NTC, Great Lakes, IL	End Test	5-25-12						

RESULTS (include water quality before organisms were loaded)

WATER CHEMISTRY ANALYSIS (RANGE)												
Site	Cond. (μmhos)	D.O. (mg/L)	рН	Temp. (°C) Instantaneous	Alkalinity (mg/L as CaCO ₃₎)	Hardness (mg/L as CaCO ₃₎)	Ammonia (mg/L)					
Control	337 – 370	6.0 – 9.0	6.3 – 7.1	22.5 – 23.2	34 – 54	80 – 98	0.04 - 0.35					
NTC17PCSD53	435 – 462	5.3 – 8.7	6.2 – 7.2	22.5 – 23.2	84 – 86	128 – 130	0.03 - 0.16					
NTC17PCSD54	442 – 499	5.0 – 8.9	6.9 – 7.6	22.5 – 24.3	90 – 96	124 – 130	001 – 0.15					
NTC17PCSD60	512 – 575	2.3 – 8.4	6.4 – 7.6	22.5 – 24.3	124 – 132	148 – 158	0.1 – 3.6					
NTC17PCSD61	428 – 449	4.1 – 9.0	6.8 – 7.4	22.5 – 24.3	62 – 84	144 – 148	ND - 0.19					
NTC17PCSD63	439 – 476	3.6 – 8.6	6.9 – 7.5	22.5 – 24.3	80 – 98	116 – 154	0.1 – 0.53					
NTC17PCSD64	494 – 543	1.7 – 8.6	6.6 – 7.5	22.5 – 24.3	110 – 118	150 – 160	0.1 – 4.1					
NTC17PCSD66*	468 – 471	3.9 – 8.8	6.6 – 7.2	22.5 – 23.2	100 – 116	120 – 162	0.04 - 0.50					
NTC17PCSD68*	509 – 547	2.1 – 8.8	6.7 – 7.3	22.5 – 24.3	116 – 142	132 – 160	0.1 – 2.1					

^{*} Reference Site

F		TRA TECH NUS	S, INC.	C	HAIN	OF CU	STODY		ı	NUMBER N	0	0278	81	1		PAG	E OF	
		02/	FACILITY: CHEAT LA	KES		DJECT N	RT DA	VIS		PHONE NUMI	BER_7		LABOR	RATORY	NAME	AND CO	ONTACT:	63993
SAMI	LERS (S	IGNATURE)						LEADE	3		HONE NUMBER ADDRESS							
	KJ	tel			-	EITH PRIEDM				47-30		et	400	RED	GROOM	<u>K</u> 8	LVD. Su	चपट 200
					CARRIER/WAYBILL NUMBER								OWBAGS MILLS, MD ZILLD					
										CONTAIN	E	UW -	>/v.G. >	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.5,	no -		
STAN	DARD TA	ΔT Π		***************************************	4		1.5			PLASTIC				_/	_/_	_/		/ / /
RUSH	TAT 🗌		hr. 🗌 7 day 🎉	14 day		CM	SD, QC,			PRESER' USED	VATIVE	/	/ /	//		//		
2012		SIT	E 17	0	(EP) C.M.	BOTTOM DEPTH (FF)	SW,	COLLECTION METHOD GRAB (G) COMP (C)	CONTAINERS	THEORY	MYSIS	1						
		MAN	LCH 2012	OCATION ID	тор рертн (ЕТ)	TOM DE	MATRIX (GW, SO, ETC.)	LECTION B (G) IP (C)	OF CONT	WE'CK.								
DATE	TIME	SA	AMPLE ID	700	T0P	ВОТ	MAT	COL GRA COM	No.			//						COMMENTS
3/28	1550	NTCITPO	5053		0	4	· 50	C		V						f		
13128	1505	NTCITE	CSD54				50	- C	ì									
13/23	6141	NTCITE	265059				50	- C	i									
3128							50	1										
	0310	NTCITP	1 8-				50		1	1								
13127	1645	1					5D			\ <u>\</u>								
3127	1315						50		<u> </u>	\\ \tag{\range}								
	1510						50	<i>C</i>										
13124	৩৪३১	NTCITP	25058				50	C										
3129	1132	NTCITE	250 65				SD	C	1									
3124	1210	NTC 17 P					SD	<	ì									
3129	1515	NTCIDE	45067				50	<	i									
		NTC 1786	->D68		A	1	SD		i	V								
	1. RELINQUISHED BY				DATE 30 12 0755 1			1. F	RECEIVED BY	FC	a)EX				DA.	TE30.12	TIME	
	2. RELINQUISHED BY								RECEIVED BY	11/1	hor de				DĄ	- 30 - 1 <u>2</u> Z 2	TIME	
3. REL	INQUISH	ED BY			DATE		Т	IME	3. F	RECEIVED BY						DAT	fE ^{// S}	TIME

DISTRIBUTION:

WHITE (ACCOMPANIES SAMPLE)

YELLOW (FIELD COPY)

PINK (FILE COPY)

4/02R

	B. LABORATORY BENCH SHEETS	

0915 Test #: T+01291 Laboratory ID: Sediment Load Date/Time: Client/Project: NVS-Path lane Cuntro 1029 Sample ID: Organism Load Date/Time: 5 Organism Batch #: 0109 930 100 Sediment Volume (mL): Test End Date/Time: 175 Organism Age: Water Volume (mL): Corresponding Control Test #:

Day				Repl	icate				Analyst	Time	Final Mean % Survival # Surviving
	1	2	3	4	5	6	7	8			# Exposed X 100
0	(C)*	Q)	10	10	10	10	10	O	85	1089	025
10	li	10	9	10	10	10	P	9	P6	ONO	77.

		Renev	val Water	Batch ID & Time				Alk	Hard		NH ₃ (mg/L)	р	Н	Temp	(°C)	DO (1	ng/L)	Ana	alyst	Tir	me
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	YCT#	(mg/L as CaCO ₃)	(mg/L as CaCO ₃)	Cond. (µS)	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
-2	14500395	PS	69 15	0600395	PS	1400					0.10	41.0	7.1	63	13.2	23.2	8.0	6.1	65	PS	09%	1430
-1	lob00395	25	0930	10/100395	05	1430					0.09	0.07	6.3	6.4	5، ډډ	215	6.1	60	85	PS	0943	1430
0	10/200395	RS	0900	Jab00395	PS	1570	184	3	80	337	O. c ⁴	ø,6t	6.3	6-7	13.0	230	8.4	6.2	B	15		1540
1	lob00395	RS	0930	14500785	85	1535	284							.,	22.	5	7.5	B	P	2	09	30
2	10600775	BS	0970	(4600395	BS	1530	184								72	7	G	. 5	85		092	O
3	16400 785	Ø5	0430	lub00395	BS	1540	282								23.	(8.9	4	BS		695	è
4	10/00399	Q.S	ମ୍ବର	lus 00375	вs	1550	787								23.		75	1	P5		1000	0
5	Laboo395	85	0900	la600775	5 5	1500	<u></u>								223	91	74	ĺ	(S		(200	
6	10h00395	05	6930	\ab00395	Q5	1550	286								22	8	7.	9	(3		094	15
7	14500595	<i>B</i> 5	0920	G60038S	15-5	1510	787								22.	6	8	, 7	BS		092	5
8	6300395	P5	0930	lobo0395	<u>(</u> ()	1615	282						٠.		77.	6	8.	. 1	65		0915	Š
9	10b00395	PI	8920	10000395	25	600/	282	54	98	370	0.3	5	7.1		22.	6	9.0		85		1110	j.
10														Ä	27	.7	76	1	<u>P</u> S	S	150	5

Water quality measurements will be taken upon the 1" renewal of the day on the "out" water. Ceplaced in A

QC: WY

Test ID: T+01291

Drying Temp: 100°C

Analyst: Was

Start Date: 5/15/12

End Date: 5/25/12

Weighing Date: 5/29/12

Client: T+0000

Test ID	Replicate	A Weight of boat (mg)	B Dry Weight of foil and organisms (eg)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
·	Α	1.1951	1.1960	0.9	i\	0.687	
	В	1.1804	1.1811	£.0.	10	60.0	
	C	1.1853	1.1865	4,2	٩	0,13	
	D	1.1825	1.1838	1.3	10	0.13	
	Е	1.1847	(.1847	0.5	10	0.05	
	F	1.1838	1-1851	1,3	l O	0.13	
	G	1.1869	25.81.1	6.0	٩	850,0	
	Н	1,2018	1.2023	۲,0	9	0.044	
Blanks	Α	1.1760	1751	0.1			
Dialiks	В	1.1639	1.1638	-0.1			

P80.05, pvA

 Test #:
 TTO 1292
 Laboratory ID:
 Sediment Load Date/Time:
 5 | 3 | 2 | 930

 Sample ID:
 NTC 1 PCSP53
 Client/Project:
 NW-Polytow
 Organism Load Date/Time:
 5 | 5 | 12 | 1031

 Organism Batch #:
 \$\infty\$ | \$\infty\$

Day				Repl	icate				Analyst	Time	Final Mean % Survival
	1	2	3	4	5	6	7	8	Analyse	Title	# Surviving X 100 # Exposed
0	10	10	10	(0)	10	10	10	(0)	25	1031	0 v A
10	9	8	10	7	7	S	ĺb	10	85	MSa	2000

		Renev	wal Water	Batch ID & Time				Alk	Hard		NH ₃ (mg/L)	р	Н	Temp	(°C)	DO (1	mg/L)	Ana	alvst	Ti	me
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	YCT#	(mg/L as CaCO ₃)	(mg/L as CaCO ₃)	Cond. (µS)	AM	PM	AM	PM	AM	PM	AM	РМ	AM	PM	AM	PM
-2	las 00395	PS	0930	lob00395	7	1400					0.10	0.10	7.1	62	737	23.2	8.0	58	Bs	ρs	0900	1430
-1	lobe0395	15	0930	la/20395	PS	1430					0. iz	0.10	۲ů	6.5					15	₹5	0943	
0	6600395	05	0900	1060039S	P 5	1540	259	84	130	11/1		0.03		6.7		23.0		63		62	1030	1 1
1	lob00375	O	0930	las00795	B5	U35	787		1 "						22		8,0		PS		09%	
2	6500375	Bs	0920	las00773	13 ₅	1570									プ ソ		4	7	15		09:	
3	10500395	BS	0730	lab 00395	B5	1540	7 92								23		8,	3	15	1	095	
4	abo395	PS	No	la500395	135	(550	787								Q3.	. 1	8.		(25)		100	
5	1000395	PS	090		15	1500	787								W.		7.6		8		100	
6	1050039	65	9930	10100395	(3	1550	282								A2 .3	3	8.0		PS	ŝ	094	
7	la 600395	BS	0920	la600395	55	1510	287								22.	6	8.		165		692	
8	l000385	PS	0170	laboo395	ps	1015	287								22.		8.6	2	(25	- 1	0915	
9	lab0395	es	9920	1000395	PS	1600	187	80	128 2	185	0. ((7,2		22.		8.		Q'5		1//4	
10															入分	.7	7.9		P	5	905	00571

Weight Data for Hyallela azteca Growth

Page __lof___l

Test ID: TTO 1292

Drying Temp: 100°C

Analyst: NSS

Start Date: 5 | 5 | 12

Drying Time: 6 h

Weighing Date: 5 | 29 | 12

Client: TE NUS

Test ID	Replicate	A Weight of boat (6 g)	B Dry Weight of foil and organisms ()	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	A	1.7047	1,2050	0.8	φ.	0.089	
	В	1.1942	1.1951	0.8	8		W
	С	1.2031	1. 2040	6.9	ĺ	0.10	
	D	1, 2, 15, 2	1.2158	0.6	7		
	Е	1.1997	1,2009	1 1	<u> </u>	0.0%	
	F	1,1958	i. 1973		3	0.133	
	G	1.1810	1.1830			0.19	
,	Н	1,1693	1.1697	1.0	10	0.10	
Planks	А	1.17-60	1.1761		10	0.14	
Blanks	В	17/22	1.1638	0.1			

Avg. = 0.116

Test #: TTO 1293 Laboratory ID: T+ 0435 Sediment Load Date/Time: Sample ID: NCT 17 16 SD 60 Client/Project: NW-Paralle Organism Load Date/Time: 1132 Organism Batch #: 009 Sediment Volume (mL): 100 Test End Date/Time: 1030 Organism Age: 2-14 175 Water Volume (mL): Corresponding Control Test #: TT01291

i		T										Corresponding Co
	Day				Repl	icate			·····			Final Mean % Survival
		1	2	3	4	5	6	7	8	Analyst	Time	# Surviving
	0	10	10	(0	10*	10	10	10		le.	V 20	# Exposed X 100
	10	9	10	9	12		9.	/	9	12	117%	86.3
Г			<u> </u>		10			6	/	56	1035	0 4 (1 1

Day	Renewal 1	Analysi	Time	0	T	T	YCT#	Alk (mg/L as	Hard (mg/L as	Cond.	NH ₃ ((mg/L)		оН	Temp	(°C)	DO ((mg/L)	An	alyst	Тт	ime
-2			-	Renewal 2	Analyst	Time		CaCO ₃)	CaCO ₃)	(μS)	AM	PM	AM	РМ	AM	PM	AM	PM	AM	PM	†	T
	166 00395	85	0935	1000395	B	1400					0.10	2.8	7.1	7 11						FIVI	AM	L
-1	10600395	B	0930	10000395	8	1430									23.2		8.0	35	85	PS	0900	14
0	10400395	05	090		85	1540	1/1	152	1100	COC		1.7 元分	6.7	7.2	22.5	22.5	2.3	56	PS	B	0993	j.
1	10h00395	es	0930				-	1004	140	575	5.3	19	66	67	22.5	225	5.0	5.5	15	PS	1030	15
2	lasoc 795			2		1535									22.	6	6.	3	P5	.,_	09:	
,		1		14600395	BS	1570	287							.i.	73.	2	G.	3	100			
4	1.6.000			lab 00395	15	1590	723								23	~ 0	7.			2	03	
		25	0900	1950038	55	1550	182								95,			San San San San San San San San San San	<u>BS</u>		698	
5	107	PS 8	9900	14600375	BS	1500	281							-	5000	-	7.9		B		1000) —
6	abo395 p	25	930	10,000,395	85 N	550	182								230	-	7.5		<u>PS</u>		1000)
	4300395		5910	,		1	28)							4	24, 3		0.98		62		994.	5
3			9301	200	0/ 1	9								Ç	23.1	-to-	7.0		35		09)	
1	1 MC	-		10M0397		<u>v.</u>	182				10.22			7	3.2	18	3.2		Pς	-+	910	m.
	0 700 2 1- 1	> 0	190/	10/210395	B 14	000	82 1	24 15	26	70°	1245	> 5/12	4112 7 (7.9		3,2		25	+	<u> </u>	À
	Jonisms Co										- 2//		- 1	T	23	- Sant			<u>S</u> 23		<u>110</u> SoS	

* 3 Organisms removed, replaced in D PS 5115112 renewal of the day on the "cut" water.

Test ID: TTO 13 3 Start Date: 5 15 13 End Date: 5 25 13

Drying Temp: 100 C Drying Time: 6 N Weighing Date: 5 29 13

Analyst: W88 Client: TENKS

Test ID	Replicate	A Weight of boat (mg)	B Dry Weight of foil and organisms (mg)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	A	0.1859	1.1866	£.0	q	850.0	
	В	1.1806	1.1811	2.6	(0	70.0	
	С	1.1661	1.1671	0.1	9	0.11	
	D	1.1838	1.1855	-	in	0.14	
	E	1.1863	1.1868	00		0.083	
	F	1. 1755	1.1763	6.0	₹*		
	G	1.2040	1.2050	10	<u>V</u>	0.114	
	Н	1,1716	1, 12 22	17	<u> </u>	0.16	
Blanks	Α	0011.1	[1]	01	7	0.13	
Didilks	В	111639	(.1638	-0.1			

tookpoint to los tool on *

Aug. = 0.107

Test #: TT 01294

Sample ID: NTC 17 PC 50 64

Organism Batch #: 009

Organism Age: 12-14d

Laboratory ID:

Client/Project: NW-Roth

Sediment Volume (mL): 100

175 Water Volume (mL):

Sediment Load Date/Time:

Test End Date/Time:

0945

1130

Organism Load Date/Time:

Corresponding Control Test #:

1045 Tto 1291

		l										
	Day				Rep	licate						Final Mean % Survival
		1	2	3	4	5	6	T	1	Analyst	Time	# Surviving
	0	è.	-00-	1.0	<u> </u>	 	6	<u> </u>	8			# Exposed X 100
-		10	CY	10	10	10	10	10	100	QS.	1/20	
	10	<i>[</i>]		Ω	As			1			MX	015
L		7	_/	7			10	4		8<	1120	000
											1150	ı

Day	Renewal 1		T	er Batch ID & Time	T	Т	YCT#	Alk	Hard	Cond.	NH ₃ ((mg/L)		рН	Temp	(°C)	DO (mg/L)	An	alyst	T	me
	venewai I	Analyst	Time	Renewal 2	Analyst	Time	1 101 #	CaCO ₃)	(mg/L as CaCO ₃)	(μS)	AM	РМ	AM	PM	AM	PM	AM	PM	 	T T		
-2	ias 00 775	PS	0915	6 beoz95	85	1400					0.10	a i	7 /	()					AM	PM	AM	PN
-1	10/00395	8	0930	(obe0395	185	143							7.1	9.9		93.7	80	29	65	PS	09#	14
0	10100395	PS	69100		_	1540		116	100		4.0		6.9	74	22.5	334		5.0	PS	85	0943	14
1	lob/0395		0930		0			118	199	543	上.7	21	73	7.4	22.5	¥5	5.4	5.5	85	P5	1030	19
2		`				1535									22	ا جا	6.4		RS		093	
3		35	0920	16500315	95	1520	284								2.3	12	6.		Bo		092	
			0830	(4500375	35	1540	785								23.	-+	7			1		
4		15	0900	las00395	35	1850	187										namely .		05	'	ors	0
5	Loboo395	PS 0	900	16500398	135	500	181							_	23,0	-	1.1		()		000	
6	Jahoo395	PS 6	930	10100315	,		282							_	239		16		<u>PS</u>		000	ļ
7 6	10600375		7920	1		560								6	94.3		<u> 7.5</u>		RS	5 (094-	5
		0.				ato.									73.		7.0		68		092	S
9			992 Y	le200395	2/ 1	0	282	\ A .		0					13. 2	.	8.4	- 17	15		0919	
0	10/00/17 1		7 120	10h00395	85 V	000 g	82 1	101	60 4	44	2.0	7	7.5	9	42.9	-01	7.8	1	? ? 5			
	o Olapaisms														3.1		16	+			0// <u>1</u>	

Test ID: TTO 129 4

Drying Temp: 1000

Analyst: WYP

Start Date: 5 15 12

End Date: 5 25 12

Weighing Date: 5 29 12

Test ID	Replicate	A Weight of boat (🗚g)	B Dry Weight of foil and organisms (B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
·	A	1.7018	1,2022	0.4	Ç	0.08	
	В	1.1410	1.1818	0.8	4	0.114	
	С	1.1996	1,2063	6.7	<u> </u>		
	D	1.1673	1.1691	0.8		870.0	
	Е	1.1707	1.1718	7.5		0.072	
	F	1,2169	1-2139	1.0		0.12	
	G	1.1749	1,1354		10	0.10	
	Н	1.1949	1.1961	0.6		0.15	
Blanks	Α	00-61.1	10761		\(\)	0.11	
DIANKS	В	1.1635	1.1638	<u>-0.1</u>			

Aug. 2 0.103

Test #: T+01295

Client/Project: NS Whate

100 th

5/13/12 0845

Sample ID: NTC 17PC SD 68

Organism Load Date/Time:

11(8

Organism Batch #: 009

Sediment Volume (mL):

Laboratory ID: T+

Test End Date/Time:

Sediment Load Date/Time:

1100

Organism Age: 12-14d

Water Volume (mL):

Corresponding Control Test #: 7701291

. .

				[Final Mean % Survival								
Day		·			icate				Analyst Time # Surviving					
	1	2	3	4	5	6	7	. 8			# Exposed X 100			
0	10	0)	10	10	10	10	to	10	155	MR	~ C			
10	10	8	10	8	9	8	フ	10	Ø5	1210	87.3			

		Renev	wal Water	Batch ID & Time	***************************************	:		Alk	Hard	*	NH ₃ (mg/L)	/L) pH			(°C)	DO (mg/L)		Analyst		Time	
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	YCT#	(mg/L as CaCO₃)	(mg/L as CaCO ₃)	Cond. (µS)	AM	PM	AM	РМ	ÄМ	PM	AM	РМ	AM	PM	AM	PM
-2	16600 375	85	0945	loh00395	25	140)					0.10	1.3	7,1	7.1	分3 エ	23.2	8.0	44	185	P5	0900	450
-1	Jahan 395	75	2699	\ah00395	₽S	1430				*	2.(1.0	7.0	69	JJ.5	23.4	2.1	5.7	PS	PS	0943	
0	10400395	Ø5	040	10/100395	B	1540	284	116	132	547	1,0	1.3	6.7	7.1		225	Entrarior constant	56	es	PS	1030	
1	10100395	B	0930	6500375	85	153 _S	284								JJ	<i>d</i> .	7.4		25		0930	
2	la500395	135	0970	la500395	3	1530	784								J	3.2	-7.	8	1 15		0920	
3	14500375	B5	09 30	la 600375		ムチャ	287								23	. O	8	0			0950	
4	\aboo395	B	9900	6400395	BS	1550	ムを入								23/		7.	ì	PS		1000	
5	lober 795	85	9 900	las 00 395	155	1500	~8Z								23		80		05		100	
6	lab0395	15	0930	la/100395	P5	1590	282								A1.3		₹. S	2	P	5	094	
7	,	BS	0920	14500395	15	(510	282								23.	material.	7.5	S	65	,	092	3
8		135	0131	loho0399	rs	1615	X)								۵3. ا)	8.	8	_		0915	
9	10500395	PS.	0920	10/20395	Ø>	lyou	787-	142	100	509	Ü,	7	7.3	3	77.	9	8.9	5	0/		1/1/0	
10															7 3.	in the second	7.8)	15		150:	

Weight Data for Hyallela azteca Growth

 Test ID:
 TTO 1295
 Start Date:
 5/15/12
 End Date:
 5/25/12

 Drying Temp:
 1005C
 Drying Time:
 6/2
 Weighing Date:
 5/29/12

 Analyst:
 NAS
 Client:
 Tt Nus
 The control of the contro

Test ID	Replicate	A Weight of boat (mg)	B Dry Weight of foil and organisms (1989)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	Α	1.1680	1.1695	A: 1.5	10	0.12	
	В	1,1786	1,1795	0.9	8	6.11	
	С	1.1810	1.1824	1,4	10	0.14	
	D	1.1842	1.1848	0.3	8	880.0	
	Е	1. 1836	1.1946	1,0	Q	0.11	
	F	1.1971	4491.1	0,6	8	760.0	
	G	1.2076	1.2034	(,4		0.2	
	Н	1.1852	1.1864	1.2	10	0.12	
Disales	Α	1,1760	1,176	0.1			
Blanks	В	1,1639	1.1638	~~ O+ 1			

Aug. = 0.124

Test#: T+01296

Client/Project: WW Pathiam

Sediment Load Date/Time: 5/13//4 0935

Sample ID: W / C / / C C

Organism Load Date/Time:

Test End Date/Time:

5/12 1116

Organism Batch #: 009

Sediment Volume (mL): 100

5/25/12 1130

Organism Age: (2-14d

Water Volume (mL): 75

Corresponding Control Test #: TTO 12 91

				Repl			Final Mean % Survival					
Day				nepi	Rate	Analyst Time #Surviving	# Surviving	100				
	1	2	3	4	5	6	7	8			# Exposed	100
0	16	9	9	10	10	10	10	10	85	4/11	02 X	
10	10	lo"	10	9	10	7	7	10	165	1725	10:0	

Laboratory ID: T

		Renew	val Water	Batch ID & Time				Alk	Hard	Cond.	NH ₃ (mg/L)	р	Н	Temp	(°C)	DO (mg/L)		Analyst		Tir	ne
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	YCT#	(mg/L as CaCO₃)	(mg/L as CaCO₃)	(μS)	AM	PM	AM	PM	AM	PM	AM	PM	АМ	PM	АМ	РМ
-2	6500395	135	6935	lobe0395	B	1400					0,10	0.08	7.(68	737	73.7	8.0	4.1	65	P5	0900)Y30
-1	lob00395	B	0930	10h00395	85	1430		0			0.10	0.14	71	7.0	22.5	234	5.0	6.1	PS	P5	0943	1430
0	10/00395	PS	0900	laboo395	B	1540	254	84	148	3	0.01	ND	69	7.2	22.5	225	6.1	6.4	8	l S	1030	1540
1	1020395	95	930	(4506395	95	1535	284								226 7.8		PS		06			
2	las 00 295	195	0920	lab00395	135	1530	284								23.2 9		8.4		155		0920	
3	la500395	BS	0930	6600395	BG.	15to	287								23	3.0 8,2		2	65		ors	
4	(ob/20395	PS	0900	lus 00)95	BS	1550	入8人								23.	4	78	}	65	>	1000	
5	labo395	8	0900	lab 00 370	135	1500	<i>ک</i> لاک								23.	1	7.5	7	0	· >	100	<u></u>
6	1060039S	<u>es</u>	0930	Va/20285	3	1590	484								24.7	5	8.0	7	15		094	5
7	19600395	BS	0920	lu500385	165	1610	282							-	23	, (9.	(169	>	099	5
8	lu500315	KS	0930		B	1619	282								λ3.	2	8.0	7	85		091	5
9	(260395	3	09D	1200395	QS	1600	282-	62	144	428	0.	19	7.	1	27	, 9	93	o O	(3		110	
10															23	.(79		1	5	150	5

VVCIgiti Data for Try anora aztosa	1 1	1 -1
Test ID: TT 0 1296	Start Date: 5 15 1	End Date: 5/25/12
Drying Temp: 100%	Drying Time: 6 k	Weighing Date: 5/29/12
Analyst: Mal	Client: TENUS	

Test ID	Replicate	A Weight of boat (mg)	B Dry Weight of foil and organisms (mg)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	A	1,1824	1.1835	2.0	10	0.09	
	В	1.1810	1.1820	1,0	0	0.10	
	С	1, 1965	-6691.1	1,2	10	0.12	
	D	1.1695	1,1702	F.0	9	0.078	
	E	1.1792	PPE 1.1	6.3	10	76,6	
	F	1.1816	1. (82)	0.5	9	0.056	
	G	1-1925	1.1936	(,)	-	0.16	· · · · · · · · · · · · · · · · · · ·
	Н	1,2095	1. 2104	0.0	10	90.0	
Dianko	Α	1.1760	1.1761	0.)			
Blanks	В	1.1637	1-1638	-0.1			

Aug = 0.096

Hyalella azteca 10-Day Sediment Toxicity Test

Test #: T+O1297 1000 Laboratory ID: T+ Sediment Load Date/Time: Sample ID: MC17 PCSD63 1123 Client/Project: NWS Path Villa Organism Load Date/Time: Organism Batch #: 000 100 Sediment Volume (mL): Test End Date/Time: Organism Age: 12-14d 175 T+01291 Water Volume (mL): Corresponding Control Test #:

			***************************************	Popl	icate	AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST AUGUST		***************************************			Final Mean % Survival
Day				кері	icate				Analyst	Time	# Surviving X 100
	1	2	3	4	5	6	7	8			# Exposed
0	10	9	10	104	(0)	(0	10	(0	135	1123	028
10	io	4	10		8	8	(0)	10	195	1355	730

		Renev	val Water	Batch ID & Time				Alk	Hard	Cond.	NH ₃ (mg/L)	р	Н	Temp	(°C)	DO (1	mg/L)	Ana	alyst	Tir	me
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	YCT#	(mg/L as CaCO ₃)		Cond. (μS)	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	РМ
-2	lus co 395	P5	1001	lobe0395	3	1400		* .			0,10	0.43	7.1	69	23.2	23.2	8.0	3.6	15	PS	090	1433
-1	10b00395	25	SF30	10600395	B	1430					0.53	0.27	7.2	7.1	JJ.5	23.4	4.5	58	P5	95	0943	1430
0	10/20395	ØS	0900	Jah00395	PS	(540	254	80	116	439	0.37	0,26	7.1	7.4	22.5	ДS	6.1	6.1	<i>Q</i> 5	P5	1030	1540
1	la/20395	85	0930	16500395	135	1535	入ガナ								20	É	7.5	5	0	<u></u>	06	130
2	14500775	BS	Ald	14500385	B5	1520	284								ん	بك	8	.5	15	5	09 8	}- 0
3	las 00315	B5	0930	6600 393	BS	1540	182								23	0	G	.4	155		08.	50
4	labor395	Ø	0900	14500395	B5	1550	<u> 181</u>								23:	4	8.1		P	5	(00	0
5	lab00395	B	09w	la 500 395	45	1500	282								030	1	7.6	2	PZ	 h	100	10
6	lab00715	PS	0930	10/100395	QS	1550	187								24.	3	80)	(CS		094	15
7	la600 375	B5	092.	10500395	165	1510	282								23		8	3	B		O92	S
8	14500395	195	0930	labo 395	ρS	1615	182								λ3.	2	8.0	Q ·	CS.	-	0919	5
9	Lober 395	<i>es</i>	0696	Jah00395	99	000	287	98	154	476	0	6 H	7.5	5	22	9	9,4	1	(?5		llvo	,
10														-	23	. (7.0		15		190	S

* two organisms removed, replaced in D & 5/15/12

Weight Data for Hyallela azteca Growth

Test ID: TO 1297	Start Date: 5/15/12	End Date: Slat/la-
Drying Temp: 100	Drying Time: 🛵	Weighing Date: 5/20/13
Analyst: NSN	Client: THINKS	/ '

Test ID	Replicate	A Weight of boat (pg)	B Dry Weight of foil and organisms (mg)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	Α	1,1790	1-1801	2.1	10	0.21	
	В	1,1784	1,1396	i,a	8	0.15	
	С	1.1832	1.1842	1,0	10	0,10	
	D	1.1882	1.1896	1.4	(1	0.13	
	E	1.1948	1.962	1,4	8	0.175	
	F	1. 1720	1, 1723	0.3	3	40.0	
	G	1. 1617	1. 627	1,0	lo	0,10	
	Н	1.1690	1,1702	1,2		0.12	
Dianka	Α	1,1760	1.1761	0-1			
Blanks	В	1.1639	1.11.29	m 0:1			

Avg. = 0.128

Hyalella azteca 10-Day Sediment Toxicity Test

Test #: T + 0129 %	Laboratory ID:	Sediment Load Date/Time: \$\int 13\12 1000
Sample ID: NTC17 (CSD54	Client/Project: NVS Palhyans	Organism Load Date/Time: 5/15/12 1(2)
Organism Batch #: 500	Sediment Volume (mL):	Test End Date/Time: 5 25 12 1200
Organism Age: 12-14d	Water Volume (mL): 75	Corresponding Control Test #: 7 + 0 1 & 9 (

				Dank	innto						Final Mean % Survival
Day				Repl	icate				Analyst	Time	# Surviving X 100
	1	2	3	4	5	6	7	8			# Exposed
0	10	10	0	10*	(0	10	6	O	QS	1121	MOSIALS
10	6	10	10	10	O	9	9	10	PS	14 30	92.5

		Renew	ral Water	Batch ID & Time	-			Alk	Hard	Cond.	NH ₃ (mg/L)	р	Н	Temp	(°C)	DO (mg/L)	Ana	alyst	Tir	me
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	YCT#	(mg/L as CaCO ₃)	(mg/L as CaCO₃)	(μS)	AM	PM	AM	PM	AM	PM	AM	РМ	AM	PM	АМ	PM
-2	lus 00 375	gs	toos	\c\x0395	85	1400					0,10	0.15	7.1	69	73.7	13.2	5.0	5.6	85	PS	Som	1430
-1	10)60395	8	G)B	10/20319	B	1430					0.11	0.01	7.2	7.1	22.5	23.4	50	6.1	15	(25	0943	1430
0	1000395	8	0900	10/20395*	P5	1540	284	96	130	499	0.01	0.03	7.0	73	415	225	6.3	66	B	fs	10%	15/10
, 1	lah90395	25	AR	19500395	BS	1535	284	1							7.	24	7.0	}	RS	ý .	09	130
2	6500395	B5	0928	lu 500795	<i>h</i> 5	1570	294								23	3.2	8	1.5	В.	5	09	٥-(
3	10500385	Bs	0970	105 0038	Bs	l540	717								23	3.0	8.	3	6	· S	08.	50
4	Jab00395	l 5	0900	10500375	BS.	1550	787								23.4	t	8.		P	5	(00	0
5	10200395	Ø	2900	10500395	KS	1500	282								239	9	7.9	8	0	>	100	0
6	10h00395	B	0930	lah00395	P5	1550	787								24.	3	8.		8		09	45
7	14500295	65	0920	19600395	Bs	(510	482								23	Rel	4	. (B	5	092	S
8	10500395	P5	0930	lober 395	65	1619	98d	4							23	. 2	(0.	8	(95	>	0919	2
9	lab60395	<i>P5</i>	<i>9</i>]ડ	Jah003915	85	1600	267	20	124	442	0.	06	7.	Q	タタ	9	8	9	Q2)	1110)
10					*										73	3.1	8.0	}	PS		1Sc	اعر

* One organism removed from enknown regaplaced in D PS 5/15/12

QC:<u>NSB</u>

Test ID: TTO WY 8	Start Date: 5/15/13	End Date: 5 at/12
Drying Temp: 100%	Drying Time: 6k	Weighing Date: 5/29/14
Analyst: WWD	Client: TH NUS	\$

Test ID	Replicate	A Weight of boat (mg)	B Dry Weight of foil and organisms (mg)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	Α	1.1657	1.1467	(,0	ما ت	6,16	
	В	1.1806	1.1818	1.2	10	0.13	
	С	1.1851	1.1862	(,(10	0.1	
	D	1. (853	1.1868	1.5	1.0	0.12	
	E	1.1747	1.1763	1,6	10	0.16	
	F	1. 1885	1, 1893	8.0	Q	0.089	
	G	1.1745	1-17-53-	1,2	9	0.133	
	Н	1,1915	1. 1925	10	ID.	0,10	
Dianto	Α	1,1760	1.1761	0.1			
Blanks	В	1.1639	1.1638	-0.1			

Aug. =0.129

Hyalella azteca 10-Day Sediment Toxicity Test

Sample ID: NTC17PCS D GG

Client/Project: NUS PARMUL

 Sediment Load Date/Time:
 5/13/12
 0930

 Organism Load Date/Time:
 5/15/12
 1033

Organism Batch #: 009

Sediment Volume (mL): 100

5/25/12 115

Organism Age: 12-14d

Water Volume (mL):

Corresponding Control Test #: TEO 1291

Test End Date/Time:

					Renl	icate						Final Mean % Survival
	Day									Analyst	Time	# Surviving
l		1	2	3	4	5	6	7	8			# Exposed X 100
	0	10	Q)	9	10	0	10	(0)	(0	P5	1033	0-
	10	4	10	9	10	10	10	X9	10	15	430	75
								65				

Laboratory ID:

		Renew	val Water	Batch ID & Time				Alk	Hard	Cond.	NH ₃ (mg/L)	p	Н	Temp	(°C)	DO (1	mg/L)	Ana	alyst	Tir	me
Day	Renewal 1	Analyst	Time	Renewal 2	Analyst	Time	YCT#	(mg/L as CaCO₃)	(mg/L as CaCO ₃)	(μS)	AM	PM	АМ	PM	AM	PM	АМ	PM	AM	PM	AM	PM
-2	4500395	85	0920	la/100395	85	1460					0.10	0.35	7.1	7.1	232	J3.2	8.0	53	135	13	0900	1430
-1	lah0035	PS	9960	lobeozas	B	1450					0.50	0.30	7.2	66	JJ 5	ี่ ววุร	39	57	13	PS	0943	1430
0	a 40039S	65	0900)	lobo0395*	B	1540	289	100	120	471	027	0.16	9	(X) (Q)	23.0	4.0	59	62	Ps	PS	1030	1540
1	10h00395	05	0930	las 007 95	135	1535	254								92	5	8.0		8	5	09:	30
2	1050079	135	070	10,500395	155	1530	281								λ	.7	8	5	B	S	690	, O
3 /	la600398	Bo	0930	las 00375	B5	15%	187								23	. (б.	4	93	5 (o 95	0
4	10h00395	<i>(</i>)5	0900	19600385	135	1550	282								23.	-	\G.;	2	QS		(00)	2
5	Loba0395	PS	0900	19500 395	165 155	1500	٨٧٨								22	1	7.8	<u>}</u>	PS.	>	(000	0
6	lab40395	05	0930	1000395	(5	1650	28>								22.	8	8.1	0	(2S		094	15
7	la600395	Bs 1	0920	16500395	145	Slo	282								みり	. 6	4	.4	炒 5	Ċ	925	S
8	las00395	15	0130	ab00395	() S	1615	X)								λ2.	6	8.8	કે	25		0915	5
9	1050395	PS	0920	600395	ß	1600	287	1/6	167	468	0.0	34	7.1		42.6	2	8.	7	<u> (</u> 25		1110	
10															22	. 7	8.1		PS	,	150	S

Water quality measurements will be taken upon the 1st renewal of the day on the "cut" water.

qc: WW

Test ID: TTO 1299	Start Date: 5/15/12	End Date: 5/25/12
Drying Temp:) 00°C	Drying Time: 6N	Weighing Date: ﴿حَرِي الْمُعَالِي الْمُعَالِي الْمُعَالِي الْمُعَالِي الْمُعَالِي الْمُعَالِي الْمُعَالِي الْم
Analyst: WWW	Client: TE NUS	/ /

Test ID	Replicate	A Weight of boat (mg)	B Dry Weight of foil and organisms (mg)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
·	Α	1:1640	1.1658	1.8	8	0,225	
	В	1.1836	1,1845	0,9	10	10,0	
·	С	1. 1807	i. 1822	1,5	٩	6.17	
	D	1.1778	1.1798	1,7	l Û	71,0	
	E	1,1914	1-1938	Кç	10	0.24	
	F	1. 1863	1.1870	F,0	j0	F0,0	
	G	1.1873	1.1891	1,8	9	0,20	
	Н	1.2631	1. 2043	1,3-	IÒ	0.12	
Blanks	Α	00/11/1	1761	0.1			
Dianks	В	1.1639	1638	-011			

Ay = 0.161

Weight Data for Hyallela azteca Growth

Test ID: Initial Weight	Start Date: 5 15 12	End Date: 5 AS 12
Drying Temp: 60°C	Drying Time: 24/03	Weighing Date: SIL ID
Analyst: NS 165	Client:	

Test ID	Replicate	A Weight of boat (💋)	B Dry Weight of foil and organisms (pag)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	А	1.1906	1.1913	4.0 %	10-	0.3	
	В	1.194G	11952	4.6 GL	0	0.0/	
	С	1.1721	1.1727	6.6	0	0.0%	
	D	1.1918	1.1925	0.7	01		
	E	1. 1 131	1.7134	0,8	10	0.08	
	F	1,1824	1.1827	0,3	10	0.03	
	G	1.1828	1,1835	0.8		0.08	
	Н	1.1819	1.1827	0.8	10	0.08	
Dianks	Α	1,1810	1.1811	0.1			
Blanks	В	1.2111	1.2110	~ O. \			

Avg=0,066

Table C-1. Summary of statistical analysis of survival for 10-Day Pettibone Creek sediment test using *H. azteca*. Highlighted cells are significant at p<0.05.

				p < 0.05.					
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}
Control {1}		0.303747	0.196071	0.086164	0.245873	0.632875	0.646148	0.550551	0.733475
NTC17PCSD53 {2}	0.303747		0.750289	0.443452	0.864793	0.540128	0.524092	0.609645	0.455196
NTC17PCSD60 {3}	0.196071	0.750289		0.609645	0.864793	0.378538	0.369725	0.443452	0.310456
NTC17PCSD64 {4}	0.086164	0.443452	0.609645		0.524092	0.191145	0.184939	0.230648	0.150307
NTC17PCSD68 {5}	0.245873	0.864793	0.864793	0.524092		0.455196	0.443452	0.524092	0.378538
NTC17PCSD61 {6}	0.632875	0.540128	0.378538	0.191145	0.455196		1.000000	0.873815	0.864793
NTC17PCSD63 {7}	0.646148	0.524092	0.369725	0.184939	0.443452	1.000000		0.864793	0.873815
NTC17PCSD54 {8}	0.550551	0.609645	0.443452	0.230648	0.524092	0.873815	0.864793		0.759950
NTC17PCSD66 {9}	0.733475	0.455196	0.310456	0.150307	0.378538	0.864793	0.873815	0.759950	

Table C-2. Summary of statistical analysis of weight of survivors (growth) for 10-day Pettibone Creek sediment tests using *H. azteca*. Highlighted cells are significant at p<0.05.

	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}
Control {1}		0.243461	0.431619	0.523843	0.134121	0.756750	0.098984	0.098402	0.002456
NTC17PCSD53 {2}	0.243461		0.651176	0.546750	0.687230	0.360040	0.574088	0.573621	0.049856
NTC17PCSD60 {3}	0.431619	0.651176		0.847695	0.423744	0.598021	0.342646	0.343739	0.019651
NTC17PCSD64 {4}	0.523843	0.546750	0.847695		0.345508	0.710128	0.273556	0.272877	0.013369
NTC17PCSD68 {5}	0.134121	0.687230	0.423744	0.345508		0.211658	0.842841	0.835019	0.101544
NTC17PCSD61 {6}	0.756750	0.360040	0.598021	0.710128	0.211658		0.161541	0.160985	0.005461
NTC17PCSD63 {7}	0.098984	0.574088	0.342646	0.273556	0.842841	0.161541		0.980310	0.131343
NTC17PCSD54 {8}	0.098402	0.573621	0.343739	0.272877	0.835019	0.160985	0.980310		0.116115
NTC17PCSD66 {9}	0.002456	0.049856	0.019651	0.013369	0.101544	0.005461	0.131343	0.116115	

Table C-3 Summary of statistical analysis of weight of originals (biomass) for 10-day Pettibone Creek sediment tests using *H. azteca*. Highlighted cells are significant at p<0.05.

	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}
Control {1}		0.453119	0.841105	0.802832	0.305834	1.000000	0.132092	0.157347	0.003640
NTC17PCSD53 {2}	0.453119		0.547907	0.347722	0.738310	0.470492	0.399529	0.453119	0.023926
NTC17PCSD60 {3}	0.841105	0.547907		0.674232	0.381326	0.851563	0.175617	0.205203	0.005741
NTC17PCSD64 {4}	0.802832	0.347722	0.674232		0.225242	0.789233	0.089381	0.109342	0.001992
NTC17PCSD68 {5}	0.305834	0.738310	0.381326	0.225242		0.318228	0.573793	0.640069	0.045412
NTC17PCSD61 {6}	1.000000	0.470492	0.851563	0.789233	0.318228		0.137608	0.165046	0.003985
NTC17PCSD63 {7}	0.132092	0.399529	0.175617	0.089381	0.573793	0.137608		0.893698	0.112163
NTC17PCSD54 {8}	0.157347	0.453119	0.205203	0.109342	0.640069	0.165046	0.893698		0.103614
NTC17PCSD66 {9}	0.003640	0.023926	0.005741	0.001992	0.045412	0.003985	0.112163	0.103614	

H. azteca Reference Toxicant 96-h LC_{50} Data for KCI (g/L)

Test Log #	Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
Ref00224	05/27/10	0.3590	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00226	05/28/10	0.3370	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00228	06/02/10	0.3400	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00232	06/03/10	0.3400	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00234	06/04/10	0.3190	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00241	06/16/10	0.3360	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00260	06/29/10	0.3550	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00265	07/16/10	0.3670	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00272	08/06/10	0.3660	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00276	08/25/10	0.3640	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00285	09/24/10	0.4080	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00292	10/19/10	0.3690	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00305	11/09/10	0.3840	0.3581	0.3354	0.3127	0.3808	0.4035
Ref00390	05/15/12	0.3693	0.3581	0.3354	0.3127	0.3808	0.4035

Mean	0.3581
SD	0.0227
CV%	6.3442

START Date/Time: 5/15/12 1245

FINISH Date/Time: 5/19/12 1339

Dilution Water: LHS 0395

Test Substance: KCI

Client/Project: ++

Species: H. az tecox

Concentr	ation &		Numb	er alive/hour	of test		# alive # exposed	
Repli	cate	Start	24	48	72	96	(percent survival)	Comments
	Α	i 6	10	10	lo	(0		
0	В	lo	10	W	lo	10	_	
	С	10	(0	10	10	10	100%	
	D	(0	10	10	10	10		
	A	to	(0	lo	10	10		
011/	В	lo	10	10	(0	10	707 00	
0.125	С	lo	10	lo	10	9	975%	
	D	ιO	10	3710	10	10		
	Α	lo	10	(0	(0	lo		
0.25.	В	(0	10	10	10	9		
	С	lo	10	9	7	4	9人.5%	
	D	(0	10	10	l o	9		
	Α	(0	(0	3	2	7	山から対か	
0.5	В	(0	9	4	2	1	1.5%	
	С	lu	10	3	O	0	157	
	D	(0	9	4	0	0	7100	
	Α	io	0	0	Ó	0		
1	В	lu	0	0	Ô	0	0.0%	
	С	(0	Ó	ð	ð	0		
	D	10	0	0	0 ,	Ò		
	Α	(0	0	0	Q	0		
)	В	10	0	0	0	0	0.0%	
	С	(0	0	0	Ü	0		
	D	(0	0	Ò	0	٥		
ANAL	YST	85	85	35	BS	55		
TIME REI	NEWED	1245	1017	1014	1000	1339		

START Date/Time: 5/15/12 1245

Client Project: TF

Dilution Water:

FINISH Date/time: 5 / 19/11 1339

Test Substance: FCI

Species: H. Azteca

	Chemical		Hour o			
Test Conc.	Parameters	0	436	9 C		Comments
	Cond	331	387	433		
	DO	9.6	<i>G</i> .3	8. L		***************************************
0	pН	6.7	7.2	7.5		
	Before Temp	X+3 33	入2.7	23.1		
	After Temp	23.0				
	Cond	442	517	691		
	, DO	4.6	7,9	8.7		
2.125	рН	6.7	1.2	7.1		
	Before Temp	245 第5	12.7	231		
	After Temp	23.0				
	Cond	403	865 9.0	954		
	DO	4.7	9.0	8.5		
0.25	pН	4.7 6.6	7.2	7,0		
	Before Temp	14.5 B5 5/4	12.7	23.1		
	After Temp	≯ 3. <i>υ</i>				
	Cond	1265	1395	1746		
^ .	DO	8.8	1395 8.8	5.5		
0.5	рН	6-6	33,8 7.2	7.0		
	Before Temp	X45 3315	12.7	93.1		
	After Temp	入3 0		5		
	Cond	2140	2100 P			
3	DO	4.7	3,2 p			
	рН	6.6	6.6 4			
	Before Temp	JES 654/4				
	After Temp	230	2 J.5 A			
	Cond	3470	3780		\ X	
	DO	8.3	8.5		18501	
(> -	рН		66		13,	
	Before Temp	66 1+3 8534				·
	After Temp	23.0	21.5			
Α	nalyst	35	BS / BS	B5		
Time	Analyzed	しょうら	to 21/1021	1340	> Tuken ut 2	

Tetra Tech, Inc. **Ecological Testing Facility**

Data Checked and Approved:

Toxicity Test Procedure Check Sheet

Page	of
uqu	O1

Date	
Test ID Number RE F00 39 0	
Type of Test Chamber 300 AL	banke (
Number of replicates per concent	ration
Specify vessel type and volume u deliver effluent and dilutent to test chambers	
Graduated Cylinder(s)	Pipet(s)
Volumetric Flask(s)	Other
Test ID Number	Loading QC Initials
REF60390	
Exposure Chamber	Feeding Schedule
Fotal Vessel Capacity <u> 3ย</u>	Not fed
Fest Solution volume <u>よらのん</u>	Fed Daily
	Other
	Type of food
deliver effluent and dilutent to test chambers Graduated Cylinder(s) Volumetric Flask(s) Specify materials used to place the test chambers Test ID Number Exposure Chamber Fotal Vessel Capacity	Pipet(s) Other te test organisms into the Loading QC Initials Feeding Schedule Not fed Fed Daily Other

Specify below the number of milliliters (mls) of diluent and effluent measured out per concentration in this test.

Treatment Working Stock								
Treatment Concentration	Working Stock Solution	Diluent	Total Volume					
O	OL	16	11					
0.125	14	16	26					
0.45	11	16	26					
0.5	1 L	14	20					
	1 _	(L	24					
	21	Οl	LL					

Aeration	Screened Animal Enclosures	<u>Photoperiod</u>
Yes or No	Not used	dark 8 hr / light 16hr
Time Began:	Used	other

CETIS Summary Report

Report Date:

29 May-12 11:59 (p 1 of 1)

*******************************			Test Code:	Ref00390 00-1953-0166
Hyallela 96-	h Water Column Sur	vival Test		Tetra Tech, Inc.
Batch ID:	18-1951-9084	Test Type: Survival (96h)	Analyst:	

Batch ID: Start Date: 15 May-12 12:45

Protocol:

EPA/600/R-99/064 (2000)

Analyst: Diluent:

Mod-Hard Synthetic Water

Ending Date: Duration:

19 May-12 13:39 4d 1h

Species: Source:

Hyalella azteca Aquatic Biosystems, CO Brine: Age:

Sample ID:

20-5949-9629

Code:

7AC1786D

0.5

Client:

<15d

Receive Date:

08-1445-0540

Sample Date: 15 May-12 11:45

96h Survival Rate

Material: Source: Station:

0.25

Potassium chloride Reference Toxicant Project:

Method

Reference Toxicant

Sample Age: 60m

Comparison S	Summary			
Analysis ID	Endpoint	NOEL	LOEL	TOEL

TOEL **PMSD** TU 9.29%

Dunnett's Multiple Comparison Test

Point	Estimate	Summary

Analysis ID	Endpoint	Level	gm/L	95% LCL	95% UCL	TU	Method
10-2341-4032	96h Survival Rate	EC5	0.1859	0.01919	0.2986		Linear Interpolation (ICPIN)
		EC10	0.2567	0.246	0.2766		
		EC15	0.2703	0.2588	0.2891		
		EC20	0.284	0.2717	0.3018		
		EC25	0.2978	0.2848	0.3146		
		EC40	0.3402	0.3249	0.3619		
		EC50	0.3693	0.3523	0.3944		

0.3536

96h Survival Rate Summary

Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	4	1	1	1	1	1	0	0	0.0%	0.0%
0.125		4	0.975	0.9563	0.9937	0.9	1	0.025	0.05	5.13%	2.5%
0.25		4	0.925	0.9063	0.9437	0.9	1	0.025	0.05	5.41%	7.5%
0.5		4	0.075	0.03925	0.1108	0	0.2	0.04787	0.09574	127.7%	92.5%
1		4	0	0	0	0	0	0	0		100.0%
2		4	0	0	0	0	0	0	0		100.0%

96h Survival Rate Detail

Conc-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Dilution Water	1	1	1	1
0.125		1	1	0.9	1
0.25		1	0.9	0.9	0.9
0.5		0.2	0.1	0	0
1		0	0	0	0
2		0	0	0	0

000-013-180-1

CETIS Measurement Report

Report Date: Test Code:

29 May-12 11:59 (p 1 of 2) Ref00390 | 00-1953-0166

Tetra Tech, Inc.

Hyallela 96-h Water Column Survival Test

Batch ID: 18-1951-9084 Start Date: 15 May-12 12:45

Test Type: Survival (96h) Protocol:

EPA/600/R-99/064 (2000)

Analyst: Diluent:

Mod-Hard Synthetic Water

Ending Date: 19 May-12 13:39 **Duration:** 4d 1h

Species: Source:

Hyalella azteca Aquatic Biosystems, CO

Brine:

Age:

Sample ID: 20-5949-9629

Code:

7AC1786D

Client:

<15d

Sample Date: 15 May-12 11:45 Receive Date:

Material: Source: Station:

Potassium chloride Reference Toxicant Project:

Reference Toxicant

Sample Age: 60m

Conductivity-µmhos

Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	384.3	367.4	401.3	332	432	28.96	50.16	13.05%	0
0.125		3	576.7	534.1	619.2	442	691	72.6	125.7	21.8%	0
0.25		3	874	848.3	899.7	803	954	43.82	75.9	8.68%	0
0.5		3	1361	1332	1389	1265	1422	48.46	83.94	6.17%	0
1		2	2120	2110	2130	2100	2140	20	28.28	1.33%	0
2		2	3825	3803	3847	3780	3870	45	63.64	1.66%	0
Overall		16	1523			332	3870			1.0070	0 (0%)

Dissolved Oxygen-mg/L

Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	8.367	8.296	8.437	8.2	8.6	0.1202	0.2082	2.49%	0
0.125		3	8.733	8.682	8.785	8.6	8.9	0.08819	0.1527	1.75%	0
0.25		3	8.767	8.663	8.87	8.5	9.1	0.1764	0.3055	3.49%	0
0.5		3	8.7	8.641	8.759	8.5	8.8	0.1	0.1732	1.99%	0
1		2	8.45	8.33	8.57	8.2	8.7	0.25	0.3536	4.18%	0
2		2	8.65	8.578	8.722	8.5	8.8	0.15	0.2121	2.45%	0
Overall		16	8.611			8.2	9.1				0 (0%)

pH-Units

Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	7.133	6.997	7.27	6.7	7.5	0.2333	0.4041	5.67%	0
0.125		3	7	6.91	7.09	6.7	7.2	0.1528	0.2646	3.78%	0
0.25		3	6.933	6.83	7.037	6.6	7.2	0.1764	0.3055	4.41%	n
0.5		3	6.933	6.83	7.037	6.6	7.2	0.1764	0.3055	4.41%	0
1		2	6.6	6.599	6.601	6.6	6.6	0	0	0.0%	0
2		2	6.6	6.599	6.601	6.6	6.6	0	0	0.0%	0
Overall		16	6.867		***************************************	6.6	7.5				0 (0%)

Temperature-°C

Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	22.93	22.86	23	22.7	23.1	0.1202	0.2082	0.91%	0
0.125		3	22.93	22.86	23	22.7	23.1	0.1202	0.2082	0.91%	0
0.25		3	22.93	22.86	23	22.7	23.1	0.1202	0.2082	0.91%	0
0.5		3	22.93	22.86	23	22.7	23.1	0.1202	0.2082	0.91%	0
1		2	22.75	22.63	22.87	22.5	23	0.25	0.3536	1.55%	0
2		2	22.75	22.63	22.87	22.5	23	0.25	0.3536	1.55%	0
Overall		16	22.87			22.5	23.1				0 (0%)

Report Date: Test Code: 29 May-12 11:59 (p 2 of 2) Ref00390 | 00-1953-0166

Hyallela 96-h	Water Column	Survival [*]	Test		Tetra Tech, Inc
Conductivity	-µmhos				
Conc-gm/L	Control Type	1	2	3	
0	Dilution Water	332	389	432	
0.125		442	597	691	
0.25		803	865	954	
0.5		1265	1395	1422	
1		2140	2100		
2		3870	3780		
Dissolved O	xygen-mg/L				
Conc-gm/L	Control Type	1	2	3	
0	Dilution Water	8.6	8.3	8.2	
0.125		8.6	8.9	8.7	
0.25		8.7	9.1	8.5	
0.5		8.8	8.8	8.5	
1		8.7	8.2		
2		8.8	8.5		
pH-Units					
Conc-gm/L	Control Type	1	2	3	
0	Dilution Water	6.7	7.2	7.5	
0.125		6.7	7.2	7.1	
0.25		6.6	7.2	7	
0.5		6.6	7.2	7	
1		6.6	6.6		
2		6.6	6.6		
Temperature	o-°C				
Conc-gm/L	Control Type	1	2	3	
0	Dilution Water	23	22.7	23.1	
0.125		23	22.7	23.1	
0.25		23	22.7	23.1	
0.5		23	22.7	23.1	
1		23	22.5		
2		23	22.5		

Figure E-1 Copper Concentration in Sediment vs Survival of Hyalella azteca 96 SD66 (ref) SD63 SD61 94 SD54 92 90 Percent Survival (%) SD53 SD68 (ref) SD60 84 SD64 82 80 10 20 30 40 50 60 70 80 90 100 Concentration (mg/kg)

Figure E-2 Lead Concentration in Sediment vs Survival of Hyalella azteca 96 SD66 (ref) SD61 SD63 94 SD54 92 90 Percent Survival (%) SD53 SD68 (ref) SD60 84 SD64 82 80 20 40 60 80 100 120 Concentration (mg/kg)

Figure E-3 Zinc Concentration in Sediment vs Survival of Hyalella azteca 96 SD66 (ref) SD61 SD63 94 SD54 92 90 Percent Survival (%) SD53 SD68 (ref) SD60 84 SD64 82 80 50 100 150 200 250 300 350 400 450 0 Concentration (mg/kg)

Figure E-4 PAH Concentration in Sediment vs Survival of Hyalella azteca 96 SD66 (ref) SD63 SD61 94 SD54 92 90 Percent Survival (%)

88 88 (Let) SD53 SD60 84 SD64 82 80 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 Concentration (mg/kg)

Figure E-5 Copper Concentration in Sediment vs Growth of Hyalella azteca 0.16 SD66 (ref) 0.14 SD63 SD54 0.12 SD68 (ref) SD53 0.1 SD60 Mean Growth (mg) SD61 SD64 0.06 0.04 0.02 0 0 10 20 30 40 50 60 70 80 90 100 Concentration (mg/kg)

Figure E-7 Zinc Concentration in Sediment vs Growth of Hyalella azteca 0.16 SD66 (ref) 0.14 SD63 SD54 0.12 SD68 (ref) SD53 0.1 SD60 Mean Growth (mg) SD61 SD64 0.06 0.04 0.02 0 0 50 100 150 200 250 300 350 400 450 Concentration (mg/kg)

Figure E-8 PAH Concentration in Sediment vs Growth of Hyalella azteca 0.16 SD66 (ref) 0.14 SD63 SD54 0.12 SD68 (ref) SD53 0.1 SD60 Mean Growth (mg) SD61 SD64 0.06 0.04 0.02 0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 Concentration (mg/kg)

PITT-07-12-053

July 27, 2012

Project 112G01021

Dept. of the Navy Naval Station Great Lakes NAVFAC MW Code EV Attn: Benjamin Simes 201 Decatur Ave. Building 1A Great Lakes, IL 60088

Reference:

CLEAN Contract No. N62467-04-D-0055

Contract Task Order 474

Subject:

Final Reports

Tier II UFP Sampling and Analysis Plan for Sediment Characterization in Support of

the Feasibility Study

2. Sediment Characterization Report in Support of the Feasibility Study

Site 17 - Pettibone Creek Naval Station Great Lakes Great Lakes, Illinois

Dear Mr. Simes:

Tetra Tech Inc. is pleased to submit three copies of each of the subject reports. Copies have also been distributed as indicated below. Please distribute the copy to Howard Hickey through your internal mail.

If you have any questions or concerns regarding these reports, please contact Aaron Bernhardt at (412) 921-8433 or me at (412) 921-7251.

Sincerely,

Robert F. Davis, P.E. Project Manager

RFD/alk

Enclosure

CC:

Howard Hickey, NAVFAC Midwest (1 copy)

Brian Conrath, Illinois EPA (3 copies) Beth Whetsell, Illinois DNR (1 copy)

Owen Thompson, USEPA Region 5 (2 copies)

Glenn Wagner, Tetra Tech Administrative Record (1 copy)

Dave Barclift, NAVFAC (1 CD) Tom Spriggs, NAVFAC LANT (1 CD) Dawn Hayes, NAVFAC LANT (1 CD) Aaron Bernhardt, Tetra Tech (1 CD)

John Trepanowski, Tetra Tech (letter only)

Tetra Tech

661 Andersen Drive, Pittsburgh, PA 15220-2700 File 112G01021CTO 474, Tetra Tech (1 copy unbound)

Tel 412.921.7090 Fax 412.921.4040 www.tetratech.com

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

1) Executive Summary — The first sentence of the third paragraph concludes by stating that since the predominant source of the contamination appears to be off-site, the chemicals may not be site-related. Illinois EPA agrees that there are off-site sources, but it is misleading to state that those chemicals may not be site-related. It would be more accurate to state that much of the contamination appears to have originated off-site and therefore, not all of the identified chemical contaminants are site-related.

<u>Response</u>: The requested change will be made. The sentence will be modified to read as follows: "Previous investigations detected elevated concentrations of several chemicals in the most upstream samples in Pettibone Creek, indicating that the predominant source of these chemicals appears to be off-site of NSGL; therefore, not all of the identified chemical contamination is site related."

2) Executive Summary — It is noted here and throughout the report that the suspended sediment samples have not yet been collected so the text referring to those samples is just a placeholder. It is difficult to make a determination and reach a conclusion regarding the final remedy for this site without all of the expected data. Please be sure to revise the report as soon as possible once that data becomes available. Is there a projected date for collecting those samples?

<u>Response</u>: The suspended sediment samples were collected and data will be included in the final report. Tables presenting the analytical results and comparisons to criteria along with the associated text that will be added to the report will be provided to the project team for review as soon as they are available.

3) **Section 2.1.1** — In the fifth paragraph it states, "Ten particles were measured in each transect using calipers to determine the size class." That statement is incorrect. The reviewer observed this process first-hand and calipers were not used. Please revise this statement accordingly.

<u>Response</u>: The text will be modified as follows: "Ten particles were randomly picked from the substrate at even intervals across each transect and measured with a sand gauge. Particles were determined to be either silt, very fine sand, fine sand, medium sand, coarse sand or very coarse sand. Particles larger than coarse sand were measured on a millimeter scale."

4) Section 2.1.3 — The discussion regarding the sediment traps being repositioned should be expanded to include the dates of the storms and the number of days in which the traps were out of position, etc.

<u>Response</u>: The last paragraph of Section 2.1.3 will be modified as follows: "After the samplers were first deployed, a storm event caused debris to gather on the upstream side of the traps and the water pressure turned the traps vertically so they were no longer collecting sediment. The traps were found out of position on April 30th. The debris was removed and the traps were repositioned three days later on May 3rd.

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

5) **Section 2.3** — Please provide an explanation for why the sediment samples were not analyzed for grain size as was called for in the Sampling and Analysis Plan.

Response: The grain size samples were not collected due to an oversight when reviewing the SAP in the field. The fourth paragraph of Section 2.3 will be modified as follows: "Physical sediment data, such as total organic carbon (TOC), and pH, were collected to help describe habitat conditions and assist in understanding the spatial distribution and magnitude of contamination. Although it was specified in the SAP, the sediment samples were inadvertently not analyzed for grain size due to an oversight during the sampling event. However, the absence of the data did not impact the results of the investigation because the pebble count conducted as part of the benthic invertebrate study was adequate to characterize the sediment substrate. The grain size data collected in 2001 during the RI are presented in Table 2-4. The sediment samples from 0 to 4 cm and from 1 foot below the sediment surface (bss) were classified as sand or silty sand. One sample was collected from 4 cm to 3 feet bss and was classified as clayey sand, which is consistent with the observation of a blue-gray clay layer located about 1 foot bss and is considered to represent native material."

6) **Section 3.1** — It states in the last paragraph that the collected data are adequate to complete this study. Is that determination based upon only the data currently in-house or does it include the samples that are yet to be collected? Will that statement still be true if that data is not collected and included in this report?

Response: This statement will be reviewed and adjusted if necessary based on the Data Usability Assessment, which will be included in Appendix B of the final report. The Data Usability Assessment will evaluate the samples including the recently collected suspended sediment samples. Note that suspended sediment was collected from the sediment traps. Enough sediment was collected from NTC17PCSD50 for all analyses, but only a little sediment was collected from NTC17PCSD51 and NTC17PCSD52. Therefore, the sediment from those traps were combined and were analyzed for metals, because there was inadequate sample volume for analysis of the organic parameters. Based on a preliminary review of the results, and provided the quality of the data from the laboratory is acceptable, the data is expected to be adequate to complete the study. The suspended sediment results are just another line of evidence to determine whether there are current upstream sources of contamination to Pettibone Creek, but based on the sediment data, there do appear to be current upstream sources.

7) **Table 3-6** — According to the footnote, the QHEI score for SD53 should be shaded as it is less than 55.

Response: The requested change will be made.

8) **Figures 3-3 through 3-5** — The bars at the bottom of the figure showing the dates the samples were collected are incorrect. Please review and revise as necessary.

Response: The requested change will be made.

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

9) **Section 4.1.1.2** — This section should clearly point out whether there was a measurable difference between the test site and reference site in regards to chemical concentrations.

Response: An additional paragraph will be included after the third paragraph in Section 4.1.1.2 to clarify chemical concentration differences between the test and reference sites. The additional text will be as follows: "Chemical concentrations in the site samples were generally greater than concentrations in reference samples. However, chemicals concentrations from the North Branch tributary (NTC17PCSD57 and NTC17PCSD58), NTC17PCSD59, NTC17PCSD62, and NTC17PCSD63 were similar to reference samples concentrations for total PAHs. Chemical concentrations from the North Branch tributary (NTC17PCSD57 and NTC17PCSD58), NTC17PCSD54, NTC17PCSD59, NTC17PCSD61, and NTC17PCSD62 were generally similar to reference samples concentrations for the primary metals of concern (copper, lead, and zinc)."

10) **Section 4.1.1.3** — The last sentence appears to be slanting the discussion somewhat. While it may be accurate, to be fair, it should be stated whether there was a statistical difference between the mean growth in test samples versus the mean growth in reference samples also.

Response: The last sentence will be expanded as follows: "The toxicity testing indicated acceptable survival for the site and reference samples. Mean growth in some of the site samples was significantly lower than the mean growth in one reference sample (NTC17PCSD66). However, this reference sample had much greater growth compared to the other reference sample (NTC17PCSD68). Tables C-2 and C-3 in Appendix E show which samples had lower growth compared to the growth in sample NTC17PCSD66. None of the site samples had significantly lower mean growth compared to the mean growth in the reference sample from NTC17PCSD68. Therefore, growth is not considered impacted in site samples."

11)Section 4.1.1.4 — The discussion here regards the overall benthic invertebrate community evaluation. There is discussion provided that, in general, the benthic communities were better in the reference reaches than in the site reaches. The discussion of the chemicals detected in the site samples does not provide this same comparison. That comparison needs to be provided and discussed here as well.

<u>Response</u>: A sentence will be added after the sixth sentence of Section 4.1.1.4 which discusses exceedance of screening values. The following text will be added: "In general, concentrations of contaminants (primarily PAHs and metals such as copper, lead, and zinc) are generally higher in the North Branch of Pettibone Creek (site reaches) compared to the South Branch (reference reaches). However, there does not appear to be a correlation between chemical concentrations in the sediment and any of the benthic macroinvertebrate metrics, which indicates that sediment chemistry may not be the reason for the "poor" to "fair" benthic community health ratings."

12) **Section 4.2** — The recommendation should be clear that it applies only to Pettibone Creek, not all of Site 17. The Boat Basin was not included in this investigation.

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

<u>Response</u>: A sentence will be added after the first sentence in Section 4.2 to state "This recommendation only applies to the portion of Site 17 evaluated in this investigation which is the North Branch of Pettibone Creek that lies within the NSGL property boundary, exclusive of the Boat Basin."

13) Section 4.2 — The stated recommendation is for no further action at the site. The reason provided for this determination is that the poor benthic communities found in some of the North Branch samples are likely related to habitat and not the sediment chemistry. The Agency can concur that the available habitat is a contributing factor along with the physical stressors related to stream velocities, etc., but the sediment chemistry may also contribute to the adverse effects. This should be clearly stated.

The Agency can concur though that while certain restoration activities might help improve the biological integrity of the creek, a removal of contaminated substrates alone will not likely make a significant difference in the state of the benthic communities within the creek.

Response: Comment Noted. The first paragraph of Section 4.2 will be modified as follows to indicate the potential contribution of sediment chemistry to poor benthic community health: "Based on the results of this investigation, no actions are recommended for Pettibone Creek because a combination of available habitat, physical stressors related to stream velocities, and sediment chemistry may contribute to the poor benthic communities observed in some of the North Branch samples. However, removal of contaminated sediment would not likely result in a significant benthic community in Pettibone Creek for reasons discussed below because there appears to still be current sources of contamination to Pettibone Creek."

14) **Section 4.2** — Another restoration activity that would help improve habitat in the creek is the repair or re-routing of the nearly 30 storm water outfalls that empty into the creek on base, many of which have long been in a state of disrepair.

<u>Response</u>: The Navy notes this comment. The comment will be passed onto the public works group and it will be addressed when funding becomes available. Also the following text will be added before the last sentence of Section 4.2: "Additionally, the repair or re-routing of the stormwater outfalls that empty into the creek on base would help improve habitat in the creek."

15) **Appendix A** — Suggest adding additional photographs to better show the differing conditions encountered within a single reach and to show an example of surface sediment collection activities.

<u>Response</u>: Photos of several sampling reaches are provided in Appendix B of the Benthic Community Survey Report (Appendix B). Photos were taken facing upstream and downstream and different conditions within the same reach can be seen in some of the photos. A selection of these photos will also be included in Appendix A. No photographs of the surface sediment collection procedures were taken.

16) General Comment -- In the Agency's provided comments on the sampling plan in regards to the

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

screening levels, we stated that "A thorough review of the listed values to confirm that they remain current could not be completed in the time allotted. Therefore, the Agency reserves the right to request revisions to these values once a more complete review has been conducted." Unfortunately, insufficient time has been allotted for our review of this submittal as well. Therefore, Illinois EPA requests the Navy consult the Agency's website and the provided databases to confirm that the most up-to-date screening values have been used.

<u>Response</u>: Comment Noted. As requested by the Illinois DNR, the criteria presented in the report will be updated as follows: PAH sediment data will be compared to the baseline sediment remediation concentrations in the 2009 update of the Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments. Pesticide, PCB, and metals sediment data will be compared to USEPA Region 5 Ecological Screening Levels for Sediment.

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 -- PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

The Navy uses the 2000 draft sediment clean-up objectives (SCOs) to screen results. There is an updated 2009 draft and some of the values are significantly different (lower). Are the "unpublished derived water quality criteria" used to calculate some of the baseline SCOs still relevant or have they been revised also?

Response: The sediment criteria using unpublished derived water quality are no longer relevant. Because only PAH data is provided in the 2009 update, the criteria presented in the report will be updated as follows: PAH sediment data will be compared to the baseline sediment remediation concentrations in the 2009 update of the Tiered Approach for Evaluation and Remediation of Petroleum Product Releases to Sediments. Pesticide, PCB, and metals sediment data will be compared to USEPA Region 5 Ecological Screening Levels for Sediment.

2) The mIBI has limited value due to the sampling occurring in March. In terms of taxa present and their abundance in the site reaches, although such data may be realistically compared to the reference reaches at that time of year, an mIBI value should not be assigned to each reach and those reaches compared unless those scores are going to be strictly assigned to an early spring sampling. The early spring mIBI scores should not be compared to summer scores generated previously.

Response: Comment noted. The primary comparisons of the mIBI values were between the site samples and the reference samples that were collected during the same sampling event in March 2012. The benthic report in Appendix B presented some mIBI scores in samples collected by Illinois EPA from other locations in the region during their standard index period for information purposes. No conclusions regarding the health of the benthic community in Pettibone Creek were based on this additional information though. The following statement will be added to the end of the first paragraph on page 11 of Appendix B: "No conclusions regarding the health of the benthic community in Pettibone Creek were based on this additional information."

3) Are any of the trends of total taxa and chemical concentrations being driven by pollution-tolerant species? Please evaluate the locations where there were a greater number of taxa present with higher chemical concentrations and determine whether the taxa are more diverse due to the occurrence of more pollution-tolerant species.

<u>Response</u>: Test site NTC17PCSD63 had a high number of taxa (30) and higher than average concentrations of copper, lead, and zinc. Five of the 30 taxa (17%) were considered tolerant (tolerance values ≥ 7). In comparison, eight of 31 taxa (26%) were tolerant in reference site NTC17PCSD67, with the highest number of taxa and low concentrations of metals. High diversity does not appear to be due to tolerant taxa in this case. The tolerant taxa that were common to both samples included Oligochaeta, Tanytarsus, Cryptochironomus, and Stenelmis. Unique to the test site was Chironomus, which has the highest possible tolerance value (11).

It appears that taxa diversity was not driven by pollution tolerant taxa. Taxa richness is typically driven by sensitive taxa, that tend to occur in lower numbers and to disappear when stresses cause unsuitable

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17

- PETTIBONE CREEK

NAVAL STATION GREAT LAKES

GREAT LAKES, ILLINOIS

conditions. Tolerant taxa are sometimes present in low numbers even when environmental conditions are relatively good and they increase in numbers as conditions worsen. Changes in abundance may have no effect on richness. Using the same samples discussed above, two taxa in the test sample were intolerant of pollution (tolerance values ≤ 3) as were three taxa in the reference sample.

The paragraphs above will be added to Appendix B in Section 3.2 before the first full paragraph on page 8 and to the main text of the report in Section 3.1.1 immediately before the paragraph beginning within "Taxa in the sensitive insect orders...".

4) Some of the tables include MacDonald et al. 2000 Threshold Effect Concentrations (TEC). Please include these values in the text in addition to the PECs.

<u>Response</u>: The Region V Ecological Screening Levels for the metals are the based on the TECs. A discussion will be added to Section 3.1.2.1 to indicate this.

5) QHEI scores are based heavily on professional judgment. If much weight is being given to the arguments related to the "poor or fair" benthic community sources being due to lack of habitat rather than chemical impacts, then a neutral party should perform a QHEI for comparison.

Response: It is recognized that the QHEI is based heavily on professional judgment, but the same person determined the scores within all of the reaches so the results should be consistent, relative to each other. The precision of the QHEI was tested during its development, by making comparisons between observations on different dates by the same observer and between observations by different observers on the same date (Rankin 1989). A paired t-test showed no significant difference (p>0.05) in the final QHEI scores or in 4 or more of the 6 individual metric scores, depending on the comparison. The scoring difference averaged less than one point for each of the variables. Therefore, it is unlikely that an independent evaluation of the QHEI scores would be much different than what was found, so it is not considered necessary. The following paragraphs describe the other lines of evidence used to determine whether chemicals in sediment were responsible for the benthic community in the creek to show that the majority of the weight was not based on the QHEI scores.

Because almost 50% of the variability in the biological index can be attributed to the QHEI, habitat is an important line of evidence which suggests that non-chemical factors are likely responsible for at least some of the benthic community results. The habitat variables that had the greatest difference in average magnitude between (non-tributary) reference and test sites were instream cover and channel morphology. Channel morphology also had the greatest variability (highest standard deviation) among the reference site scores. This is not to suggest that the QHEI or any of the component variables are imprecise, but that the channel morphology may actually be variable within reference sites. The Navy maintains that there is a habitat effect on biological conditions, as illustrated in Figure 8 in Appendix B of the report. The Navy also assumes that the variability in measurement of any one data point applies equally to all data points, and that even with potential imprecision, the habitat effects on biology are real.

Note that the QHEI was only one of several lines of evidence used to determine whether the "poor to fair" benthic community was caused by chemicals in the sediment. Another line of evidence was the plots of several benthic community metrics such as mIBI, total Taxa, EPT percent score, and density versus chemical concentrations in the sediment. These plots did not indicate that chemical concentrations were correlated with the various benthic metrics. Finally, another line of evidence that was used to evaluate impacts to the benthic community was the toxicity tests. These tests are typically used to directly link

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

chemical concentrations to impacts to benthic invertebrates because the chemical concentrations in the sediment that is used for toxicity testing are known. The fact that none of the site samples were considered toxic, provide the best evidence that the chemical concentrations in the sediment are not likely responsible for the "poor to fair" benthic community in the North Branch of Pettibone Creek.

Rankin, E. 1989. The Qualitative Habitat Evaluation Index (QHEI): rationale, methods, application. Ohio EPA Division of Surface Water. Accessed 7/10/2012: http://www.epa.ohio.gov/portals/35/documents/BioCrit88 QHEIIntro.pdf

6) **Section 3.1.2, page 3-5, 4th full paragraph, last sentence.** Please specify what is meant by "typical spraying activities." Are those labeled application rates or typical activities for the Navy or the surrounding communities?

Response: The phrase was meant to indicate that the pesticide concentrations observed in the sediment are not indicative of a CERCLA release, but are representative of levels that are commonly found in areas where pesticides were applied under typical/normal conditions, regardless of whether the area is Navy property or the surrounding community. This can be seen from Table 3-2 that concentrations of the pesticides referred to in the text were similar in the site, reference, and upstream samples. The text will be modified as follows: "...typical spraying activities and not an intentional or accidental release of pesticides to the creek."

7) Section 4.1.1.4, page 4-3, eighth sentence. It may, in fact, be unlikely that the chemicals are the sole factor inhibiting the stream benthics; however, it is also unlikely the chemicals in the sediment are not impacting the benthic community in Pettibone Creek at all, as is indicated in this sentence.

<u>Response</u>: The sentence will be modified as follows: "Based on the results of these three lines of evidence, the possibility that chemicals in the sediment are at least partially impacting the benthic community in Pettibone Creek cannot be ruled out. However, the lack of toxicity observed..."

8) **Section 4.1.2.1, page 4-4, first paragraph.** Please specify the source of the mentioned pesticides, i.e. whether they are traveling from upstream or from run-off from the bluffs on base or both.

Response: Based on the low concentrations of the pesticides, and the relatively consistent results within Pettibone Creek, it is difficult to determine the source of the pesticides. Once the suspended sediment results are reviewed, it can be determined whether pesticides are entering the creek from upstream sources. Other potential sources are runoff from the facility from areas where spraying did occur, which then enters the stormwater system and discharges to Pettibone Creek through the outfalls. The following paragraph will be added to the end of Section 4.1.2.1: "Based on the low concentrations of the pesticides, and the relatively consistent results within Pettibone Creek, it is difficult to determine the source of the pesticides. Potential sources include runoff from areas where pesticides were applies to the ground, which then entered the

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

stormwater system and discharged to Pettibone Creek through the outfalls."

9) **Appendix B, Section 1—** In response to the statement: "No federally listed endangered or threatened species are known to exist in the area." — The Navy continues to ignore the IDNR recommendation to include the mudpuppy as a possible species of concern in Pettibone Creek.

Response: The statement in Appendix B, Section 1 and Section 1.3 of the main report will be modified as follows: "No federally listed endangered or threatened species are known to exist in the area. The Mudpuppy salamander is listed as a threatened species that is protected by the State of Illinois. NSGL is conducting a study to determine whether the Mudpuppy salamander is present in Pettibone Creek and the Harbor at NSGL, along with some additional locations. One sampling event was conducted in July 2011, but no Mudpuppy salamanders were observed or captured in the area during this event. Two additional sampling events occurred in 2012 but the results are not yet available."

10) **Appendix B, Section 3.2** — On page 7, paragraph 2, for consistency and accuracy, please change the term "stressed sites" to "test sites."

Response: The requested change will be made.

11) **Appendix B, Section 3.2** — On page 7, paragraph 3, please clarify whether any of the seven midge taxa (that occurred only in the reference sites) were considered tolerant.

<u>Response</u>: The paragraph will be modified as follows: "Taxa with high tolerance values ($TV \ge 7$) are considered tolerant of pollution. Seven midge taxa occurred only in reference sites, including Ablabesmyia (TV=6), Dicrotendipes (TV=8), Micropsectra (TV=4), Nanocladius (TV=3), Parachironomus (TV=8), Paraphaenocladius (TV=6), and Rheocricotopus (TV=6). Two tolerant midge taxa were only found in test sites, including Chironomus (TV=11) and Zavrelimyia (TV=8)." This text will also be added to the main text of the report in Section 3.1.1 after the paragraph beginning with "The score of each of the metrics...".

12) **Appendix B, Section 4, page 18** — According to results there is 48% correlation between variability in test sites versus reference sites in regards to benthic samples and the physical habitat. The remaining 52% can be explained by other parameters (ex. Sediment chemistry and others). This provides an indication that the removal of contaminated substrate may still need to be considered.

<u>Response</u>: The Navy does not agree that because the remaining 52% of the variability in test sites versus reference sites in regards to benthic samples is related to other parameters, there is a need to remove contaminated sediment. Even if the contaminated sediment was removed, and assuming that the contaminated sediment is entirely responsible for the 52% of the variability

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

(which is unlikely), then the benthic community would still be impacted by the poor habitat. Also, as discussed in other responses, the toxicity test results provide more weight that the sediment chemistry is not likely impacting the benthic invertebrates.

13) **Appendix B, Section 4, page 18** — To further enhance the physical in-stream habitat available to benthic organisms, the Navy could stop removing the wood debris (as recommended). An important additional step to consider for such action is securing the debris in the appropriate locations so scour does not occur in unwanted locations.

<u>Response</u>: Comment noted. However, although securing debris to prevent scouring is a good idea to improve the overall habitat in the stream, this is not a CERCLA issue. Therefore, the Navy cannot commit to securing the debris in this document.

14) Appendix B, Section 4, page 18 — In response to the following statement; "This end-of-pipe environment is a harsh habitat that would be impractical to restore to natural conditions and restoration to morphologically stable stream conditions may not benefit the biological community." — If "natural conditions" refers to pristine conditions, IDNR agrees that restoring to pristine conditions is not practical. However, restoration may be warranted to increase the biological habitat which is potentially being negatively impacted by substrate contaminants.

<u>Response</u>: The Navy agrees that restoration of the creek would be beneficial to the benthic community. However, because the harsh habitat in the creek is not caused by a CERCLA release, any restoration activities would need to be conducted under a different program.

15) **Appendix B, Section 4, page 19** — IDNR agrees that a potential goal on which the Navy could focus for the North Branch of the creek may be to restore the physical and sediment chemistry conditions to conditions similar to the South Branch, which are attainable conditions for the region. In order to achieve such restoration, relevant mIBI values must be compared. (See previous comment on the main report.)

<u>Response</u>: Although the Navy would obviously prefer that the physical and sediment chemistry conditions in the North Branch be similar to that in the South Branch, a removal action by the Navy is not warranted at this time for several reasons. First, the physical condition of the creek is the result of natural conditions, and not the result of a CERCLA release. Also, as indicated in the main body of the report, there is still a continuing source of contamination to the creek. Therefore, even if the contaminated sediment were removed, it would likely become recontaminated from the upstream sources. No change to the text is required.

16) It is stated on page 3 of Appendix E that "Avoidance of the sediment by test organisms was observed in some test containers, particularly sites NTC17PCSD60 and NTCI7PCSD64." Is this behavior common for test organisms in toxicity tests that otherwise show non-toxic results? Please provide an explanation

DRAFT SEDIMENT CHARACTERIZATION REPORT IN SUPPORT OF THE FEASIBILITY STUDY FOR SITE 17 - PETTIBONE CREEK NAVAL STATION GREAT LAKES GREAT LAKES, ILLINOIS

for this apparent anomaly.

<u>Response</u>: The avoidance of sediment by Hyalella azteca has been shown to be common in sediments with a very high sand content or in tests that are not fed (Ingersoll et al., 2000). The organisms were fed daily during the tests, so that would not be the reason. Although grain size analysis was not conducted, if a grain size analysis was conducted, Table 8 in Appendix B presents the percent particle size distribution for each sampling station determined by systematic random, 100-particle modified Wolman pebble count. Based on the results in the table, the grain size distribution at sites NTC17PCSD60 and NTC17PCSD64 were not remarkably different that the other sites, except that the percent of silt/clay was on the lower side.

Also, Whiteman et al. (1996) found that the 10-d LC50 for ammonia in sediment exposures with H. azteca was not reached until pore-water concentrations were nearly tenfold the water-only LB50 (at which time the ammonia concentration in the overlying water was equal to the water-only LC50). The authors attributed this discrepancy to avoidance of the sediment by H. Azteca. As seen in Appendix E, the maximum ammonia concentrations in the samples from NTC17PCSD60 and NTC17PCSD64 were elevated compared to the other stations, which may have been partially responsible for the avoidance of the sediment.

These two paragraphs above will be added to Appendix E after the first paragraph under Comments Concerning Test.

Table 3-5 in the main body of the report presents the sediment chemistry results for the samples selected for toxicity testing. As can be seen from the table, the chemical concentrations in the samples from NTC17PCSD60 and NTC17PCSD64 were lower than or similar to the concentrations in the other samples. A few chemicals had their maximum detected concentrations in those samples, but the maximum detected concentrations were not much greater than the concentrations in some other samples.

In summary, there are a few reasons why the avoidance behavior may have occurred, but none of the reasons are definitive. Therefore, an explanation for the apparent anomaly would just be speculation.

Ingersoll CG, Ivey CD, Brunson EL, Hardesty DK, and Kemble, NE. 2000. Evaluation of Toxicity: Whole Sediment Versus Overlying-Water Exposures with Amphipod Hyalella azteca. Environ. Toxicol. Chem 19: 2906-2910.

Whiteman FW, Ankley GT, Dahl MD, Rau DM, and Balcer MD. 1996. Evaluation of interstitial water as a route of exposure to ammonia in sediment tests with macroinvertebrates. Environ. Toxicol. Chem 15: 794-801.